forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fold_conv_bn.h
35 lines (29 loc) · 970 Bytes
/
fold_conv_bn.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#pragma once
#include <torch/csrc/jit/api/module.h>
namespace torch::jit {
/** \brief Fold Conv2d-BatchNorm2d into Conv2d in all methods of this
* module and all its submodules, forward is included by default.
*
* The weight and bias of the Conv2d are correspondingly updated. Should only be
* used on modules in eval mode.
*/
TORCH_API Module FoldConvBatchNorm(const Module& module);
struct TORCH_API ConvBNParameters {
at::Tensor conv_w;
at::Tensor conv_b;
at::Tensor bn_rm;
at::Tensor bn_rv;
double bn_eps = 0.0;
at::Tensor bn_w;
at::Tensor bn_b;
};
/**
* Given the current weight and bias tensors of a Conv module and parameters
* of the BatchNorm module we're folding with, compute the updated values
* for the weight and bias.
*
* The function is basically copied from torch/nn/utils/fusion.py
*/
TORCH_API std::tuple<at::Tensor, at::Tensor> computeUpdatedConvWeightAndBias(
const ConvBNParameters& p);
} // namespace torch::jit