forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
jit_opt_limit.h
37 lines (28 loc) · 1.35 KB
/
jit_opt_limit.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#pragma once
#include <torch/csrc/Export.h>
#include <string>
#include <unordered_map>
// `TorchScript` offers a simple optimization limit checker
// that can be configured through environment variable `PYTORCH_JIT_OPT_LIMIT`.
// The purpose is to limit how many optimization you can make per pass.
// This is useful for debugging any passes.
// Opt limit checker is enabled on a per file basis (hence per pass). For
// example, in `constant_propagation.cpp`, `PYTORCH_JIT_OPT_LIMIT` should be set
// to `constant_propagation=<opt_limit>` or, simply, to
// `constant_propagation=<opt_limit>` where <opt_limit> is the number of
// optimizations you want to make for the pass. (i.e.
// `PYTORCH_JIT_OPT_LIMIT="constant_propagation=<opt_limit>"`).
// Multiple files can be configured by separating each file name with a colon
// `:` as in the following example,
// `PYTORCH_JIT_OPT_LIMIT="constant_propagation=<opt_limit>:dead_code_elimination=<opt_limit>"`
// You can call opt limiter by calling JIT_OPT_ALLOWED. It will return true if
// we haven't reached the optimization limit yet. Otherwise, it will return
// false. Typical usage:
// if (!JIT_OPT_ALLOWED) {
// GRAPH_DUMP(...); //supplied from jit_log
// return;
// }
namespace torch::jit {
TORCH_API bool opt_limit(const char* pass_name);
#define JIT_OPT_ALLOWED opt_limit(__FILE__)
} // namespace torch::jit