forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PixelShuffleKernel.cpp
253 lines (219 loc) · 8.98 KB
/
PixelShuffleKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/native/cpu/PixelShuffleKernel.h>
#include <ATen/core/TensorBase.h>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/native/cpu/utils.h>
#include <ATen/cpu/vec/vec.h>
#include <c10/util/irange.h>
namespace at::native {
namespace {
template <typename scalar_t>
void cpu_pixel_shuffle(
TensorBase& output,
const TensorBase& input,
int64_t upscale_factor) {
auto input_data = input.const_data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
// [(B1...Bn), C, H, W] => [N, C, H, W]
int64_t channels = input.size(-3);
int64_t height = input.size(-2);
int64_t width = input.size(-1);
int64_t sub_channels = channels / (upscale_factor * upscale_factor);
int64_t numel = input.numel();
int64_t nbatch = numel / (channels * height * width);
int64_t S = upscale_factor;
// input strides
int64_t stride_n = channels * height * width;
int64_t stride_c = S * S * height * width;
int64_t stride_s1 = S * height * width;
int64_t stride_s2 = height * width;
int64_t stride_h = width;
// input tensor shape of [n, c, s1, s2, h, w]
// output tensor shape of [n, c, h, s1, w, s2]
at::parallel_for(0, numel, 0, [&](int64_t begin, int64_t end) {
int64_t n{0}, c{0}, h{0}, s1{0}, w{0}, s2{0};
data_index_init(begin, n, nbatch, c, sub_channels, h, height, s1, S, w, width, s2, S);
for (const auto i : c10::irange(begin, end)) {
int64_t input_offset = n * stride_n + c * stride_c + s1 * stride_s1 +
s2 * stride_s2 + h * stride_h + w;
output_data[i] = c10::load(&input_data[input_offset]);
data_index_step(n, nbatch, c, sub_channels, h, height, s1, S, w, width, s2, S);
}
});
}
template <typename scalar_t>
void cpu_pixel_shuffle_channels_last(
TensorBase& output,
const TensorBase& input,
int64_t upscale_factor) {
TORCH_CHECK(input.ndimension() == 4,
"pixel shuffle with channels last format supports tensors with 4 dims");
auto input_data = input.const_data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
int64_t nbatch = input.size(0);
int64_t channels = input.size(1);
int64_t height = input.size(2);
int64_t width = input.size(3);
int64_t sub_channels = channels / (upscale_factor * upscale_factor);
int64_t S = upscale_factor;
// input tensor shape of [n, h, w, c, s1, s2]
// output tensor shape of [n, h, s1, w, s2, c]
using Vec = vec::Vectorized<scalar_t>;
at::parallel_for(0, nbatch * height, 0, [&](int64_t begin, int64_t end) {
// temp buffer holding each channel lane
auto buffer = std::make_unique<scalar_t []>(channels);
scalar_t* buffer_ptr = buffer.get();
int64_t n{0}, h{0};
data_index_init(begin, n, nbatch, h, height);
for (const auto i : c10::irange(begin, end)) {
for (const auto w : c10::irange(width)) {
const scalar_t* input_ptr = input_data + n * height * width * channels + h * width * channels + w * channels;
// step 1: transpose each channel lane
// from: [c, s1*s2]
// to: [s1*s2, c]
utils::transpose(sub_channels, S * S, input_ptr, S * S, buffer_ptr, sub_channels);
// step 2: copy from temp buffer to output
for (const auto s1 : c10::irange(S)) {
scalar_t* x_ptr = buffer_ptr + s1 * S * sub_channels;
scalar_t* y_ptr = output_data + i * width * channels + s1 * width * S * sub_channels + w * S * sub_channels;
int64_t size = S * sub_channels;
int64_t d = 0;
for (; d < size - (size % Vec::size()); d += Vec::size()) {
Vec data_vec = Vec::loadu(x_ptr + d);
data_vec.store(y_ptr + d);
}
for (; d < size; d++) {
y_ptr[d] = x_ptr[d];
}
}
}
data_index_step(n, nbatch, h, height);
}
});
}
template <typename scalar_t>
void cpu_pixel_unshuffle(
TensorBase& output,
const TensorBase& input,
int64_t downscale_factor) {
auto input_data = input.const_data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
// [(B1...Bn), C, H, W] => [N, C, H, W]
int64_t sub_channels = input.size(-3);
int64_t height = input.size(-2) / downscale_factor;
int64_t width = input.size(-1) / downscale_factor;
int64_t channels = sub_channels * downscale_factor * downscale_factor;
int64_t numel = input.numel();
int64_t nbatch = numel / (channels * height * width);
int64_t S = downscale_factor;
// input strides
int64_t stride_n = channels * height * width;
int64_t stride_c = height * S * width * S;
int64_t stride_h = S * width * S;
int64_t stride_s1 = width * S;
int64_t stride_w = S;
int64_t stride_s2 = 1;
// input tensor shape of [n, c, h, s1, w, s2]
// output tensor shape of [n, c, s1, s2, h, w]
at::parallel_for(0, numel, 0, [&](int64_t begin, int64_t end) {
int64_t n{0}, c{0}, s1{0}, s2{0}, h{0}, w{0};
data_index_init(begin, n, nbatch, c, sub_channels, s1, S, s2, S, h, height, w, width);
for (const auto i : c10::irange(begin, end)) {
int64_t input_offset = n * stride_n + c * stride_c + h * stride_h +
s1 * stride_s1 + w * stride_w + s2 * stride_s2;
output_data[i] = c10::load(&input_data[input_offset]);
data_index_step(n, nbatch, c, sub_channels, s1, S, s2, S, h, height, w, width);
}
});
}
template <typename scalar_t>
void cpu_pixel_unshuffle_channels_last(
TensorBase& output,
const TensorBase& input,
int64_t downscale_factor) {
TORCH_CHECK(input.ndimension() == 4,
"pixel unshuffle with channels last format supports tensors with 4 dims");
auto input_data = input.const_data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
int64_t nbatch = input.size(0);
int64_t sub_channels = input.size(1);
int64_t height = input.size(2) / downscale_factor;
int64_t width = input.size(3) / downscale_factor;
int64_t channels = sub_channels * downscale_factor * downscale_factor;
int64_t numel = input.numel();
int64_t S = downscale_factor;
// input strides
int64_t stride_n = height * width * channels;
int64_t stride_h = S * width * S * sub_channels;
int64_t stride_s1 = width * S * sub_channels;
int64_t stride_w = S * sub_channels;
int64_t stride_s2 = sub_channels;
int64_t stride_c = 1;
// input tensor shape of [n, h, s1, w, s2, c]
// output tensor shape of [n, h, w, c, s1, s2]
at::parallel_for(0, numel, 0, [&](int64_t begin, int64_t end) {
int64_t n{0}, h{0}, w{0}, c{0}, s1{0}, s2{0};
data_index_init(begin, n, nbatch, h, height, w, width, c, sub_channels, s1, S, s2, S);
for (const auto i : c10::irange(begin, end)) {
int64_t input_offset = n * stride_n + h * stride_h + s1 * stride_s1 +
w * stride_w + s2 * stride_s2 + c * stride_c;
output_data[i] = c10::load(&input_data[input_offset]);
data_index_step(n, nbatch, h, height, w, width, c, sub_channels, s1, S, s2, S);
}
});
}
void pixel_shuffle_kernel_impl(
TensorBase& output,
const TensorBase& input,
int64_t upscale_factor) {
switch (input.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Bool, ScalarType::BFloat16, ScalarType::Half,
input.scalar_type(), "pixel_shuffle", [&] {
cpu_pixel_shuffle<scalar_t>(output, input, upscale_factor);
});
break;
}
case at::MemoryFormat::ChannelsLast: {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Bool, ScalarType::BFloat16, ScalarType::Half,
input.scalar_type(), "pixel_shuffle_channels_last", [&] {
cpu_pixel_shuffle_channels_last<scalar_t>(output, input, upscale_factor);
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
}
}
void pixel_unshuffle_kernel_impl(
TensorBase& output,
const TensorBase& input,
int64_t downscale_factor) {
switch (input.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
// input tensor shape of [N, C, Hr, Wr]
// output tensor shape of [N, Crr, H, W]
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Bool, ScalarType::BFloat16, ScalarType::Half,
input.scalar_type(), "pixel_unshuffle", [&] {
cpu_pixel_unshuffle<scalar_t>(output, input, downscale_factor);
});
break;
}
case at::MemoryFormat::ChannelsLast: {
// input tensor shape of [N, Hr, Wr, C]
// output tensor shape of [N, H, W, Crr]
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Bool, ScalarType::BFloat16, ScalarType::Half,
input.scalar_type(), "pixel_unshuffle_channels_last", [&] {
cpu_pixel_unshuffle_channels_last<scalar_t>(output, input, downscale_factor);
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
}
}
} // anonymous namespace
REGISTER_DISPATCH(pixel_shuffle_kernel, &pixel_shuffle_kernel_impl)
REGISTER_DISPATCH(pixel_unshuffle_kernel, &pixel_unshuffle_kernel_impl)
} // at::native