forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MaxPoolKernel.cpp
747 lines (676 loc) · 27.6 KB
/
MaxPoolKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/native/AdaptivePooling.h>
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/cpu/vec/functional.h>
#include <ATen/native/Pool.h>
#include <ATen/native/cpu/utils.h>
#include <c10/util/irange.h>
#include <type_traits>
#include <ATen/OpMathType.h>
#include <ATen/native/ReduceOpsUtils.h>
namespace at::native {
namespace {
template <typename scalar_t>
bool is_nan(scalar_t v) {
if (std::is_integral_v<scalar_t> || std::is_same_v<scalar_t, unsigned char>) {
return false;
}
return std::isnan(v);
}
template <typename scalar_t>
vec::Vectorized<scalar_t> is_nan_vec(vec::Vectorized<scalar_t> vec) {
return vec.isnan();
}
// TODO: use is_integeral/is_same to check the scalar_t and simplify the implementation
// currently it does not work
template <>
vec::Vectorized<unsigned char> is_nan_vec<unsigned char>(vec::Vectorized<unsigned char> vec) {
Vectorized<unsigned char> ret(false);
return ret;
}
template <>
vec::Vectorized<signed char> is_nan_vec<signed char>(vec::Vectorized<signed char> vec) {
Vectorized<signed char> ret(false);
return ret;
}
template <>
vec::Vectorized<short> is_nan_vec<short>(vec::Vectorized<short> vec) {
Vectorized<short> ret(false);
return ret;
}
template <>
vec::Vectorized<int> is_nan_vec<int>(vec::Vectorized<int> vec) {
Vectorized<int> ret(false);
return ret;
}
template <>
vec::Vectorized<int64_t> is_nan_vec<int64_t>(vec::Vectorized<int64_t> vec) {
Vectorized<int64_t> ret(false);
return ret;
}
template <typename scalar_t, typename opmath_t>
inline
std::enable_if_t<std::is_same_v<scalar_t, opmath_t>, void>
compute_internal(
const scalar_t* input_data,
scalar_t* out_data,
opmath_t* max_ptr,
vec::int_same_size_t<opmath_t>* index_ptr,
int64_t* ind,
int64_t input_depth, int64_t input_height, int64_t input_width, int64_t channels,
int64_t n,
int64_t len,
int64_t size,
int64_t id0, int64_t id1,
int64_t ih0, int64_t ih1,
int64_t iw0, int64_t iw1,
int64_t dilationD,
int64_t dilationH,
int64_t dilationW) {
using Vec = vec::Vectorized<scalar_t>;
using integer_t = vec::int_same_size_t<opmath_t>;
using iVec = vec::Vectorized<integer_t>;
// Pass I: init out lane
iVec index0_vec = iVec(id0 * input_height * input_width + ih0 * input_width + iw0);
scalar_t min_value = lower_bound<scalar_t>();
Vec out_vec = Vec(min_value);
int64_t d1 = 0;
for (; d1 < len; d1 += Vec::size()) {
index0_vec.store(index_ptr + d1);
out_vec.store(out_data + d1);
}
for (; d1 < size; d1++) {
ind[d1] = ih0 * input_width + iw0;
out_data[d1] = min_value;
}
// Pass II: compute local max
for (int64_t id = id0; id < id1; id += dilationD) {
for (int64_t ih = ih0; ih < ih1; ih += dilationH) {
for (int64_t iw = iw0; iw < iw1; iw += dilationW) {
const scalar_t* in = input_data + (n * input_depth * input_height * input_width +
id * input_height * input_width + ih * input_width + iw) * channels;
int64_t d2 = 0;
for (; d2 < len; d2 += Vec::size()) {
iVec index_vec = iVec(id * input_height * input_width + ih * input_width + iw);
Vec val_vec = Vec::loadu(in + d2);
iVec maxindex_vec = iVec::loadu(index_ptr + d2);
Vec maxval_vec = Vec::loadu(out_data + d2);
// true = all ones, false = all zeros
Vec mask = (val_vec > maxval_vec) | is_nan_vec(val_vec);
iVec imask = vec::cast<integer_t>(mask);
Vec out_vec = Vec::blendv(maxval_vec, val_vec, mask);
iVec ind_vec = iVec::blendv(maxindex_vec, index_vec, imask);
out_vec.store(out_data + d2);
ind_vec.store(index_ptr + d2);
}
for (; d2 < size; d2++) {
int64_t index = id * input_height * input_width + ih * input_width + iw;
scalar_t val = in[d2];
int64_t maxindex = ind[d2];
scalar_t maxval = out_data[d2];
bool mask = (val > maxval) || is_nan(static_cast<double>(val));
out_data[d2] = mask ? val : maxval;
ind[d2] = mask ? index : maxindex;
}
}
}
}
}
// std::is_same<scalar_t, at::BFloat16> || std::is_same<scalar_t, at::Half>
template <typename scalar_t, typename opmath_t>
inline
std::enable_if_t<!std::is_same_v<scalar_t, opmath_t>, void>
compute_internal(
const scalar_t* input_data,
scalar_t* out_data,
opmath_t* max_ptr,
vec::int_same_size_t<opmath_t>* index_ptr,
int64_t* ind,
int64_t input_depth, int64_t input_height, int64_t input_width, int64_t channels,
int64_t n,
int64_t len,
int64_t size,
int64_t id0, int64_t id1,
int64_t ih0, int64_t ih1,
int64_t iw0, int64_t iw1,
int64_t dilationD,
int64_t dilationH,
int64_t dilationW) {
using Vec = vec::Vectorized<scalar_t>;
using fVec = vec::Vectorized<opmath_t>;
using iVec = vec::Vectorized<int32_t>;
// Pass I: init out lane
iVec index0_vec = iVec(id0 * input_height * input_width + ih0 * input_width + iw0);
fVec out_vec = fVec(-std::numeric_limits<opmath_t>::infinity());
int64_t d1 = 0;
for (; d1 < len; d1 += fVec::size()) {
index0_vec.store(index_ptr + d1);
out_vec.store(max_ptr + d1);
}
for (; d1 < size; d1++) {
ind[d1] = ih0 * input_width + iw0;
max_ptr[d1] = -std::numeric_limits<opmath_t>::infinity();
}
// Pass II: compute local max
for (int64_t id = id0; id < id1; id += dilationD) {
for (int64_t ih = ih0; ih < ih1; ih += dilationH) {
for (int64_t iw = iw0; iw < iw1; iw += dilationW) {
const scalar_t* in = input_data + (n * input_depth * input_height * input_width +
id * input_height * input_width + ih * input_width + iw) * channels;
int64_t d2 = 0;
for (; d2 < len; d2 += Vec::size()) {
iVec index_ivec = iVec(id * input_height * input_width + ih * input_width + iw);
Vec val_bvec = Vec::loadu(in + d2);
auto [val_fvec0, val_fvec1] = convert_to_float<scalar_t>(val_bvec);
iVec maxindex_ivec0 = iVec::loadu(index_ptr + d2);
iVec maxindex_ivec1 = iVec::loadu(index_ptr + d2 + iVec::size());
fVec maxval_fvec0 = fVec::loadu(max_ptr + d2);
fVec maxval_fvec1 = fVec::loadu(max_ptr + d2 + fVec::size());
// true = all ones, false = all zeros
fVec mask0 = (val_fvec0 > maxval_fvec0) | is_nan_vec(val_fvec0);
fVec mask1 = (val_fvec1 > maxval_fvec1) | is_nan_vec(val_fvec1);
iVec imask0 = vec::cast<int32_t>(mask0);
iVec imask1 = vec::cast<int32_t>(mask1);
fVec max_fvec0 = fVec::blendv(maxval_fvec0, val_fvec0, mask0);
fVec max_fvec1 = fVec::blendv(maxval_fvec1, val_fvec1, mask1);
iVec ind_vec0 = iVec::blendv(maxindex_ivec0, index_ivec, imask0);
iVec ind_vec1 = iVec::blendv(maxindex_ivec1, index_ivec, imask1);
max_fvec0.store(max_ptr + d2);
max_fvec1.store(max_ptr + d2 + fVec::size());
// out_vec.store(out + d2);
ind_vec0.store(index_ptr + d2);
ind_vec1.store(index_ptr + d2 + iVec::size());
}
for (; d2 < size; d2++) {
int64_t index = id * input_height * input_width + ih * input_width + iw;
opmath_t val = opmath_t(in[d2]);
int64_t maxindex = ind[d2];
opmath_t maxval = max_ptr[d2];
bool mask = (val > maxval) || std::isnan(val);
max_ptr[d2] = mask ? val : maxval;
ind[d2] = mask ? index : maxindex;
}
}
}
}
// Convert max values from float to bfloat16/half
int64_t d3 = 0;
for (; d3 < len; d3 += Vec::size()) {
fVec max_fvec0 = fVec::loadu(max_ptr + d3);
fVec max_fvec1 = fVec::loadu(max_ptr + d3 + fVec::size());
Vec max_bvec = convert_from_float<scalar_t>(max_fvec0, max_fvec1);
max_bvec.store(out_data + d3);
}
for (; d3 < size; d3++) {
out_data[d3] = scalar_t(max_ptr[d3]);
}
}
template <typename scalar_t, bool is_3d>
void cpu_max_pool(
const Tensor& output_,
const Tensor& indices_,
const Tensor& input_,
IntArrayRef kWHD,
IntArrayRef dWHD,
IntArrayRef padWHD,
IntArrayRef dilWHD) {
size_t dims = is_3d ? 3 : 2;
TORCH_CHECK(kWHD.size() == dims && dWHD.size() == dims && padWHD.size() == dims && dilWHD.size() == dims,
"max pooling 2d/3d are not matched");
int kW = kWHD[0];
int kH = kWHD[1];
int dW = dWHD[0];
int dH = dWHD[1];
int padW = padWHD[0];
int padH = padWHD[1];
int dilationW = dilWHD[0];
int dilationH = dilWHD[1];
int kD = is_3d ? kWHD[dims - 1] : 1;
int dD = is_3d ? dWHD[dims - 1] : 1;
int padD = is_3d ? padWHD[dims - 1] : 0;
int dilationD = is_3d ? dilWHD[dims - 1] : 1;
auto input = input_.contiguous();
auto output = output_.contiguous();
auto indices = indices_.contiguous();
auto input_data = input.const_data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
auto indices_data = indices.data_ptr<int64_t>();
int64_t ndim = input.ndimension();
// treat batch size and channels as one dimension
//
// MaxPool2d:
// ndim == 3: CHW
// ndim == 4: NCHW
//
// MaxPool3d:
// ndim == 4: CDHW
// ndim == 5: NCDHW
int64_t channels;
if (is_3d) {
channels = ndim == 4 ? input.size(0) : input.size(0) * input.size(1);
} else {
channels = ndim == 3 ? input.size(0) : input.size(0) * input.size(1);
}
int64_t input_depth = is_3d ? input.size(-3) : 1;
int64_t input_height = input.size(-2);
int64_t input_width = input.size(-1);
int64_t output_depth = is_3d ? output.size(-3) : 1;
int64_t output_height = output.size(-2);
int64_t output_width = output.size(-1);
using opmath_t = at::opmath_type<scalar_t>;
// parallel on dim N, C
at::parallel_for(0, channels, 0, [&](int64_t begin, int64_t end) {
for (int64_t c = begin; c < end; c++) {
const scalar_t* input_ptr = input_data + c * input_depth * input_height * input_width;
scalar_t* output_ptr = output_data + c * output_depth * output_height * output_width;
int64_t* indices_ptr = indices_data + c * output_depth * output_height * output_width;
for (int64_t od = 0; od < output_depth; od++) {
int64_t id0 = od * dD - padD;
int64_t id1 = std::min(id0 + (kD - 1) * dilationD + 1, input_depth);
while(id0 < 0) { id0 += dilationD; }
for (int64_t oh = 0; oh < output_height; oh++) {
int64_t ih0 = oh * dH - padH;
int64_t ih1 = std::min(ih0 + (kH - 1) * dilationH + 1, input_height);
while(ih0 < 0) { ih0 += dilationH; }
for (int64_t ow = 0; ow < output_width; ow++) {
int64_t iw0 = ow * dW - padW;
int64_t iw1 = std::min(iw0 + (kW - 1) * dilationW + 1, input_width);
while(iw0 < 0) { iw0 += dilationW; }
// compute local max
int64_t maxindex = id0 * input_height * input_width + ih0 * input_width + iw0;
opmath_t maxval;
if (std::numeric_limits<opmath_t>::has_infinity) {
maxval = -std::numeric_limits<opmath_t>::infinity();
} else {
maxval = std::numeric_limits<opmath_t>::min();
}
for (int64_t id = id0; id < id1; id += dilationD) {
for (int64_t ih = ih0; ih < ih1; ih += dilationH) {
for (int64_t iw = iw0; iw < iw1; iw += dilationW) {
int64_t index = id * input_height * input_width + ih * input_width + iw;
opmath_t val = input_ptr[index];
if ((val > maxval) || is_nan(static_cast<double>(val))) {
maxval = val;
maxindex = index;
}
}
}
}
// set output to local max and store location of max
int64_t i = od * output_height * output_width + oh * output_width + ow;
output_ptr[i] = scalar_t(maxval);
indices_ptr[i] = maxindex;
}
}
}
}
});
if (!output_.is_contiguous()) {
output_.copy_(output);
}
if (!indices_.is_contiguous()) {
indices_.copy_(indices);
}
}
template <typename scalar_t, bool is_3d>
void cpu_max_pool_channels_last(
const Tensor& output_,
const Tensor& indices_,
const Tensor& input_,
IntArrayRef kWHD,
IntArrayRef dWHD,
IntArrayRef padWHD,
IntArrayRef dilWHD) {
size_t dims = is_3d ? 3 : 2;
TORCH_CHECK(kWHD.size() == dims && dWHD.size() == dims && padWHD.size() == dims && dilWHD.size() == dims,
"max pooling 2d/3d are not matched");
int64_t ndim = input_.ndimension();
// MaxPool2d: NHWC
// MaxPool3d: NDHWC
if (is_3d) {
TORCH_CHECK(ndim == 5, "max pooling 3d with channels last format supports tensors with 5 dims");
} else {
TORCH_CHECK(ndim == 4, "max pooling 2d with channels last format supports tensors with 4 dims");
}
int kW = kWHD[0];
int kH = kWHD[1];
int dW = dWHD[0];
int dH = dWHD[1];
int padW = padWHD[0];
int padH = padWHD[1];
int dilationW = dilWHD[0];
int dilationH = dilWHD[1];
int kD = is_3d ? kWHD[dims - 1] : 1;
int dD = is_3d ? dWHD[dims - 1] : 1;
int padD = is_3d ? padWHD[dims - 1] : 0;
int dilationD = is_3d ? dilWHD[dims - 1] : 1;
auto memory_format = is_3d ? at::MemoryFormat::ChannelsLast3d : at::MemoryFormat::ChannelsLast;
auto input = input_.contiguous(memory_format);
auto output = output_.contiguous(memory_format);
auto indices = indices_.contiguous(memory_format);
auto input_data = input.const_data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
auto indices_data = indices.data_ptr<int64_t>();
int64_t nbatch = input.size(0);
int64_t channels = input.size(1);
int64_t input_depth = is_3d ? input.size(-3) : 1;
int64_t input_height = input.size(-2);
int64_t input_width = input.size(-1);
int64_t output_depth = is_3d ? output.size(-3) : 1;
int64_t output_height = output.size(-2);
int64_t output_width = output.size(-1);
using opmath_t = at::opmath_type<scalar_t>;
using Vec = vec::Vectorized<scalar_t>;
using integer_t = vec::int_same_size_t<opmath_t>;
// for the convenience of vectorization, use integer of the same size of scalar_t,
// e.g. int32_t for float, int64_t for double
// need to make sure doesn't overflow
TORCH_CHECK(input_depth * input_height * input_width <= std::numeric_limits<integer_t>::max());
// parallel on dim N, {D}, H, W
at::parallel_for(0, nbatch * output_depth * output_height * output_width, 0, [&](int64_t begin, int64_t end) {
int64_t n = 0;
int64_t od = 0;
int64_t oh = 0;
int64_t ow = 0;
data_index_init(begin, n, nbatch, od, output_depth, oh, output_height, ow, output_width);
int64_t size = channels;
int64_t len = size - (size % Vec::size());
// temp buffer holding index with integer_t
auto index_buffer = std::make_unique<integer_t []>(len);
integer_t * index_ptr = index_buffer.get();
// temp buffer holding max value with opmath_t
std::unique_ptr<opmath_t []> max_arr;
opmath_t* max_ptr = nullptr;
if (!std::is_same_v<scalar_t, opmath_t>) {
max_arr = std::make_unique<opmath_t[]>(size);
max_ptr = max_arr.get();
}
for (int64_t i = begin; i < end; i++) {
int64_t id0 = od * dD - padD;
int64_t ih0 = oh * dH - padH;
int64_t iw0 = ow * dW - padW;
int64_t id1 = std::min(id0 + (kD - 1) * dilationD + 1, input_depth);
int64_t ih1 = std::min(ih0 + (kH - 1) * dilationH + 1, input_height);
int64_t iw1 = std::min(iw0 + (kW - 1) * dilationW + 1, input_width);
while(id0 < 0) { id0 += dilationD; }
while(ih0 < 0) { ih0 += dilationH; }
while(iw0 < 0) { iw0 += dilationW; }
scalar_t* out = output_data + i * channels;
int64_t* ind = indices_data + i * channels;
compute_internal(input_data, out, max_ptr, index_ptr, ind, input_depth, input_height, input_width, channels,
n, len, size, id0, id1, ih0, ih1, iw0, iw1,
dilationD, dilationH, dilationW);
// convert indice data type
vec::convert<integer_t, int64_t>(index_buffer.get(), ind, len);
// move on to next output index
data_index_step(n, nbatch, od, output_depth, oh, output_height, ow, output_width);
}
});
if (!output_.is_contiguous(memory_format)) {
output_.copy_(output);
}
if (!indices_.is_contiguous(memory_format)) {
indices_.copy_(indices);
}
}
template <typename scalar_t, bool is_3d>
void cpu_max_pool_backward(
const Tensor& grad_input_,
const Tensor& grad_output_,
const Tensor& indices_) {
auto grad_output = grad_output_.contiguous();
auto indices = indices_.contiguous();
auto grad_input = grad_input_.contiguous();
auto grad_output_data = grad_output.const_data_ptr<scalar_t>();
auto indices_data = indices.const_data_ptr<int64_t>();
auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
// treat batch size and channels as one dimension
//
// MaxPool2d:
// ndim == 3: CHW
// ndim == 4: NCHW
//
// MaxPool3d:
// ndim == 4: CDHW
// ndim == 5: NCDHW
int64_t ndim = grad_output.ndimension();
int64_t channels;
if (is_3d) {
channels = ndim == 4 ? grad_output.size(0) : grad_output.size(0) * grad_output.size(1);
} else {
channels = ndim == 3 ? grad_output.size(0) : grad_output.size(0) * grad_output.size(1);
}
int64_t input_depth = is_3d ? grad_input.size(-3) : 1;
int64_t input_height = grad_input.size(-2);
int64_t input_width = grad_input.size(-1);
int64_t output_depth = is_3d ? grad_output.size(-3) : 1;
int64_t output_height = grad_output.size(-2);
int64_t output_width = grad_output.size(-1);
// parallel on dim of N, C
at::parallel_for(0, channels, 0, [&](int64_t begin, int64_t end) {
for (const auto c : c10::irange(begin, end)) {
scalar_t* grad_input_ptr = grad_input_data + c * input_depth * input_height * input_width;
const scalar_t* grad_output_ptr = grad_output_data + c * output_depth * output_height * output_width;
const int64_t * indices_ptr = indices_data + c * output_depth * output_height * output_width;
for (int64_t od = 0; od < output_depth; od++) {
for (int64_t oh = 0; oh < output_height; oh++) {
for (int64_t ow = 0; ow < output_width; ow++) {
// retrieve position of max
int64_t index = od * output_height * output_width + oh * output_width + ow;
int64_t maxindex = indices_ptr[index];
if (maxindex != -1) {
// update gradient
grad_input_ptr[maxindex] += grad_output_ptr[index];
}
}
}
}
}
});
if (!grad_input_.is_contiguous()) {
grad_input_.copy_(grad_input);
}
}
template <typename scalar_t, bool is_3d>
void cpu_max_pool_backward_channels_last(
const Tensor& grad_input_,
const Tensor& grad_output_,
const Tensor& indices_) {
int64_t ndim = grad_output_.ndimension();
if (is_3d) {
TORCH_CHECK(ndim == 5, "MaxPool3d backward with channels last format supports tensors with 5 dims.");
} else {
TORCH_CHECK(ndim == 4, "MaxPool2d backward with channels last format supports tensors with 4 dims.");
}
auto memory_format = is_3d ? at::MemoryFormat::ChannelsLast3d
: at::MemoryFormat::ChannelsLast;
auto grad_input = grad_input_.contiguous(memory_format);
auto grad_output = grad_output_.contiguous(memory_format);
auto indices = indices_.contiguous(memory_format);
auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
auto grad_output_data = grad_output.const_data_ptr<scalar_t>();
auto indices_data = indices.const_data_ptr<int64_t>();
// MaxPool2d: NHWC
// MaxPool3d: NDHWC
int64_t nbatch = grad_input.size(0);
int64_t channels = grad_input.size(1);
int64_t input_depth = is_3d ? grad_input.size(2) : 1;
int64_t input_height = grad_input.size(-2);
int64_t input_width = grad_input.size(-1);
int64_t output_depth = is_3d ? grad_output.size(2) : 1;
int64_t output_height = grad_output.size(-2);
int64_t output_width = grad_output.size(-1);
// parallel on dim N
at::parallel_for(0, nbatch, 0, [&](int64_t begin, int64_t end) {
for (const auto n : c10::irange(begin, end)) {
scalar_t* grad_input_ptr = grad_input_data + n * input_depth * input_height * input_width * channels;
const scalar_t* grad_output_ptr = grad_output_data + n * output_depth * output_height * output_width * channels;
const int64_t* indices_ptr = indices_data + n * output_depth * output_height * output_width * channels;
for (int64_t od = 0; od < output_depth; od++) {
for (int64_t oh = 0; oh < output_height; oh++) {
for (int64_t ow = 0; ow < output_width; ow++) {
const scalar_t* gout = grad_output_ptr + (od * output_height * output_width + oh * output_width + ow) * channels;
const int64_t* ind = indices_ptr + (od * output_height * output_width + oh * output_width + ow) * channels;
// TODO: gcc vectorization
for (int64_t c = 0; c < channels; c++) {
int64_t maxindex = ind[c];
if (maxindex != -1) {
grad_input_ptr[maxindex * channels + c] += gout[c];
}
}
}
}
}
}
});
if (!grad_input_.is_contiguous(memory_format)) {
grad_input_.copy_(grad_input);
}
}
void max_pool2d_kernel_impl(
const Tensor& output,
const Tensor& indices,
const Tensor& input,
int kW, int kH,
int dW, int dH,
int padW, int padH,
int dilationW, int dilationH) {
switch (input.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
AT_DISPATCH_ALL_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "max_pool2d", [&] {
cpu_max_pool<scalar_t, /*is 3d*/false>(output, indices, input, {kW, kH}, {dW, dH}, {padW, padH}, {dilationW, dilationH});
});
break;
}
case at::MemoryFormat::ChannelsLast: {
AT_DISPATCH_ALL_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "max_pool2d_channels_last", [&] {
cpu_max_pool_channels_last<scalar_t, false>(output, indices, input, {kW, kH}, {dW, dH}, {padW, padH}, {dilationW, dilationH});
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
}
}
void max_pool3d_kernel_impl(
Tensor& output,
Tensor& indices,
const Tensor& input,
int kW, int kH, int kD,
int dW, int dH, int dD,
int padW, int padH, int padD,
int dilationW, int dilationH, int dilationD) {
if (input.ndimension() == 4) {
Tensor input_cl_check = input.unsqueeze(0);
// align with cuda:
// work around buggy behavior of suggest_memory_format here where
// suggested format of unsqueezed tensor is contiguous while it is
// really only contiguous in ChannelsLast3d
if ((!input_cl_check.is_contiguous()) &&
input_cl_check.is_contiguous(at::MemoryFormat::ChannelsLast3d)) {
TORCH_CHECK(output.ndimension() == 4 && indices.ndimension() == 4);
DimVector out_sizes(output.sizes().begin(), output.sizes().end());
out_sizes.insert(out_sizes.begin(), 1);
output.resize_(out_sizes, at::MemoryFormat::ChannelsLast3d);
DimVector indices_sizes(indices.sizes().begin(), indices.sizes().end());
indices_sizes.insert(indices_sizes.begin(), 1);
indices.resize_(indices_sizes, at::MemoryFormat::ChannelsLast3d);
AT_DISPATCH_ALL_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "max_pool3d_channels_last", [&] {
cpu_max_pool_channels_last<scalar_t, /*is 3d*/true>(output, indices, input_cl_check,
{kW, kH, kD}, {dW, dH, dD}, {padW, padH, padD}, {dilationW, dilationH, dilationD});
});
output.squeeze_(0);
indices.squeeze_(0);
return;
}
}
switch (input.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
AT_DISPATCH_ALL_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "max_pool3d", [&] {
cpu_max_pool<scalar_t, /*is 3d*/true>(output, indices, input,
{kW, kH, kD}, {dW, dH, dD}, {padW, padH, padD}, {dilationW, dilationH, dilationD});
});
break;
}
case at::MemoryFormat::ChannelsLast3d: {
AT_DISPATCH_ALL_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "max_pool3d_channels_last", [&] {
cpu_max_pool_channels_last<scalar_t, true>(output, indices, input,
{kW, kH, kD}, {dW, dH, dD}, {padW, padH, padD}, {dilationW, dilationH, dilationD});
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast3d, Contiguous");
}
}
void max_pool2d_backward_kernel_impl(
const Tensor& grad_input,
const Tensor& grad_output,
const Tensor& indices) {
switch (grad_output.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "max_pool2d_backward", [&] {
cpu_max_pool_backward<scalar_t, /*is 3d*/ false>(grad_input, grad_output, indices);
});
break;
}
case at::MemoryFormat::ChannelsLast: {
AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "max_pool2d_backward_channels_last", [&] {
cpu_max_pool_backward_channels_last<scalar_t, /*is 3d*/ false>(grad_input, grad_output, indices);
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
}
}
void max_pool3d_backward_kernel_impl(
Tensor& grad_input,
const Tensor& grad_output,
const Tensor& indices) {
if (grad_output.ndimension() == 4) {
Tensor grad_output_cl_check = grad_output.unsqueeze(0);
// align with cuda:
// work around buggy behavior of suggest_memory_format here where
// suggested format of unsqueezed tensor is contiguous while it is
// really only contiguous in ChannelsLast3d
if ((!grad_output_cl_check.is_contiguous()) &&
grad_output_cl_check.is_contiguous(at::MemoryFormat::ChannelsLast3d)) {
TORCH_CHECK(grad_input.ndimension() == 4 && indices.ndimension() == 4);
DimVector sizes(grad_input.sizes().begin(), grad_input.sizes().end());
sizes.insert(sizes.begin(), 1);
grad_input.resize_(sizes, at::MemoryFormat::ChannelsLast3d);
auto _indices = indices.unsqueeze(0).contiguous(at::MemoryFormat::ChannelsLast3d);
AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "max_pool3d_backward_channels_last", [&] {
cpu_max_pool_backward_channels_last<scalar_t, /*is_3d*/ true>(grad_input, grad_output_cl_check, _indices);
});
grad_input.squeeze_(0);
return;
}
}
switch (grad_output.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "max_pool3d_backward", [&] {
cpu_max_pool_backward<scalar_t, /*is_3d*/ true>(grad_input, grad_output, indices);
});
break;
}
case at::MemoryFormat::ChannelsLast3d: {
AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "max_pool3d_backward_channels_last", [&] {
cpu_max_pool_backward_channels_last<scalar_t, /*is_3d*/ true>(grad_input, grad_output, indices);
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast3d, Contiguous");
}
}
} // anonymous namespace
REGISTER_DISPATCH(max_pool2d_kernel, &max_pool2d_kernel_impl)
REGISTER_DISPATCH(max_pool2d_backward_kernel, &max_pool2d_backward_kernel_impl)
REGISTER_DISPATCH(max_pool3d_kernel, &max_pool3d_kernel_impl)
REGISTER_DISPATCH(max_pool3d_backward_kernel, &max_pool3d_backward_kernel_impl)
} // at::native