forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFusedAdagradKernel.cpp
218 lines (203 loc) · 6.96 KB
/
FusedAdagradKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Parallel.h>
#include <ATen/OpMathType.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/FusedAdagrad.h>
#include <ATen/Dispatch.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/cpu/vec/functional.h>
namespace at::native {
namespace{
template <typename scalar_t, typename opmath_t>
std::enable_if_t<
std::is_same_v<scalar_t, Half> || std::is_same_v<scalar_t, BFloat16>,
void>
inline adagrad_math(
scalar_t* param_ptr,
scalar_t* grad_ptr,
scalar_t* state_sum_ptr,
const double clr,
const double eps,
const double weight_decay,
const bool maximize,
const float* grad_scale_ptr,
int64_t size
){
using lpVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<opmath_t>;
int64_t d = 0;
for (; d < size - (size % lpVec::size()); d += lpVec::size()) {
lpVec param_lpvec = lpVec::loadu(param_ptr + d);
auto [param_vec1, param_vec2] = vec::convert_to_float<scalar_t>(param_lpvec);
lpVec grad_lpvec = lpVec::loadu(grad_ptr + d);
auto [grad_vec1, grad_vec2] = vec::convert_to_float<scalar_t>(grad_lpvec);
if (grad_scale_ptr) {
grad_vec1 = grad_vec1 / fVec(float(*grad_scale_ptr));
grad_vec2 = grad_vec2 / fVec(float(*grad_scale_ptr));
lpVec grad_vec_to_store = vec::convert_from_float<scalar_t>(grad_vec1, grad_vec2);
grad_vec_to_store.store(grad_ptr + d);
}
if (maximize){
grad_vec1 = grad_vec1 * fVec(opmath_t(-1.0));
grad_vec2 = grad_vec2 * fVec(opmath_t(-1.0));
}
if (weight_decay != 0.0){
grad_vec1 += param_vec1 * fVec(scalar_t(weight_decay));
grad_vec2 += param_vec2 * fVec(scalar_t(weight_decay));
}
auto [state_sum_vec1, state_sum_vec2] = vec::convert_to_float<scalar_t>(lpVec::loadu(state_sum_ptr + d));
state_sum_vec1 += grad_vec1 * grad_vec1;
state_sum_vec2 += grad_vec2 * grad_vec2;
vec::convert_from_float<scalar_t>(state_sum_vec1, state_sum_vec2).store(state_sum_ptr + d);
fVec std_vec1 = state_sum_vec1.sqrt() + fVec(scalar_t(eps));
fVec std_vec2 = state_sum_vec2.sqrt() + fVec(scalar_t(eps));
param_vec1 = param_vec1 - fVec(scalar_t(clr)) * grad_vec1 / std_vec1;
param_vec2 = param_vec2 - fVec(scalar_t(clr)) * grad_vec2 / std_vec2;
vec::convert_from_float<scalar_t>(param_vec1, param_vec2).store(param_ptr + d);
}
for (; d < size; d++) {
opmath_t grad_val = grad_ptr[d];
opmath_t param_val = param_ptr[d];
if (grad_scale_ptr) {
grad_val = grad_ptr[d] / opmath_t(*grad_scale_ptr);
grad_ptr[d] = grad_val;
}
if (maximize) grad_val = -grad_val;
if (weight_decay != 0.0){
grad_val += param_val * opmath_t(weight_decay);
}
opmath_t state_sum_val = state_sum_ptr[d];
state_sum_val += grad_val * grad_val;
state_sum_ptr[d] = state_sum_val;
opmath_t std_val = std::sqrt(state_sum_val) + opmath_t(eps);
param_val -= opmath_t(clr) * grad_val / std_val;
param_ptr[d] = param_val;
}
}
template <typename scalar_t, typename opmath_t>
std::enable_if_t<
std::is_same_v<scalar_t, float> || std::is_same_v<scalar_t, double>,
void>
inline adagrad_math(
scalar_t* param_ptr,
scalar_t* grad_ptr,
scalar_t* state_sum_ptr,
const double clr,
const double eps,
const double weight_decay,
const bool maximize,
const float* grad_scale_ptr,
int64_t size
){
using Vec = at::vec::Vectorized<scalar_t>;
int64_t d = 0;
for (; d < size - (size % Vec::size()); d += Vec::size()) {
Vec param_vec = Vec::loadu(param_ptr + d);
Vec grad_vec = Vec::loadu(grad_ptr + d);
if (grad_scale_ptr) {
grad_vec = grad_vec / Vec(scalar_t(*grad_scale_ptr));
Vec grad_vec_to_store = grad_vec;
grad_vec_to_store.store(grad_ptr + d);
}
if (maximize) grad_vec = grad_vec * Vec(scalar_t(-1.0));
if (weight_decay != 0.0){
grad_vec += param_vec * Vec(scalar_t(weight_decay));
}
Vec sum_vec = Vec::loadu(state_sum_ptr + d) + grad_vec * grad_vec;
sum_vec.store(state_sum_ptr + d);
Vec std_vec = sum_vec.sqrt() + Vec(scalar_t(eps));
param_vec = param_vec - Vec(scalar_t(clr)) * grad_vec / std_vec;
param_vec.store(param_ptr + d);
}
scalar_t grad_val_to_store;
for (; d < size; d++) {
scalar_t grad_val = grad_ptr[d];
if (grad_scale_ptr) {
grad_val = grad_ptr[d] / scalar_t(*grad_scale_ptr);
grad_val_to_store = grad_val;
grad_ptr[d] = grad_val_to_store;
}
if (maximize) grad_val = -grad_val;
if (weight_decay != 0.0){
grad_val += param_ptr[d] * scalar_t(weight_decay);
}
state_sum_ptr[d] += grad_val * grad_val;
scalar_t std_val = std::sqrt(state_sum_ptr[d]) + scalar_t(eps);
param_ptr[d] -= scalar_t(clr) * grad_val / std_val;
}
}
template <typename scalar_t>
void adagrad_fused_step_impl(
const at::Tensor& param,
const at::Tensor& grad,
const at::Tensor& state_sum,
const at::Tensor& state_step,
const double lr,
const double lr_decay,
const double weight_decay,
const double eps,
const bool maximize,
const float* grad_scale_ptr) {
using opmath_t = at::opmath_type<scalar_t>;
scalar_t* param_data = param.data_ptr<scalar_t>();
scalar_t* grad_data = grad.data_ptr<scalar_t>();
scalar_t* state_sum_data = state_sum.data_ptr<scalar_t>();
double step = state_step.item<float>();
double clr = lr / (1.0 + (step - 1.0) * lr_decay);
constexpr size_t cache_line_size = 64;
constexpr int64_t cache_line_aligned_task_unit = cache_line_size / sizeof(scalar_t);
size_t num_units = divup(param.numel(), cache_line_aligned_task_unit);
auto adagrad_fn = [&](int64_t begin, int64_t end) {
// local pointers
begin *= cache_line_aligned_task_unit;
end = std::min(end * cache_line_aligned_task_unit, param.numel());
scalar_t* param_ptr = param_data + begin;
scalar_t* grad_ptr = grad_data + begin;
scalar_t* state_sum_ptr = state_sum_data + begin;
const int64_t size = end - begin;
adagrad_math<scalar_t, opmath_t>(
param_ptr,
grad_ptr,
state_sum_ptr,
clr,
eps,
weight_decay,
maximize,
grad_scale_ptr,
size
);
};
at::parallel_for(
0, num_units, 0, adagrad_fn);
}
void fused_adagrad_kernel(
const at::Tensor& param,
const at::Tensor& grad,
const at::Tensor& state_sum,
const at::Tensor& state_step,
const double lr,
const double lr_decay,
const double weight_decay,
const double eps,
const bool maximize,
const float* grad_scale_ptr
) {
Tensor grad_contiguous = grad.contiguous();
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, param.scalar_type(), "fused_adagrad_kernel", [&] {
adagrad_fused_step_impl<scalar_t>(
param,
grad,
state_sum,
state_step,
lr,
lr_decay,
weight_decay,
eps,
maximize,
grad_scale_ptr);
});
}
}
REGISTER_DISPATCH(fused_adagrad_stub, &fused_adagrad_kernel)
} // namespace at::native