forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Distributions.h
518 lines (475 loc) · 21.1 KB
/
Distributions.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
#pragma once
#include <ATen/native/Math.h>
#include <c10/macros/Macros.h>
#include <c10/util/MathConstants.h>
// ROCM hcc doesn't work well with using std:: in kernel functions
#if defined(__CUDA_ARCH__)
#include <c10/cuda/CUDAMathCompat.h>
#define compat_exp c10::cuda::compat::exp
#define compat_ceil c10::cuda::compat::ceil
#define compat_floor c10::cuda::compat::floor
#define compat_log c10::cuda::compat::log
#define compat_pow c10::cuda::compat::pow
#define compat_sqrt c10::cuda::compat::sqrt
#define compat_tan c10::cuda::compat::tan
#define compat_abs c10::cuda::compat::abs
#define compat_log1p c10::cuda::compat::log1p
#elif defined(__HIPCC__)
#include <c10/hip/HIPMathCompat.h>
#define compat_exp c10::hip::compat::exp
#define compat_ceil c10::hip::compat::ceil
#define compat_floor c10::hip::compat::floor
#define compat_log c10::hip::compat::log
#define compat_pow c10::hip::compat::pow
#define compat_sqrt c10::hip::compat::sqrt
#define compat_tan c10::hip::compat::tan
#define compat_abs c10::hip::compat::abs
#define compat_log1p c10::hip::compat::log1p
#else
#define compat_exp std::exp
#define compat_ceil std::ceil
#define compat_floor std::floor
#define compat_log std::log
#define compat_pow std::pow
#define compat_sqrt std::sqrt
#define compat_tan std::tan
#define compat_abs std::abs
#define compat_log1p std::log1p
#endif
namespace {
#if !defined(__CUDA_ARCH__) && !defined(__HIPCC__)
// we cannot use std::isnan directly due to some incompatibility of
// gcc constexpr'ing and nvcc
using std::isnan;
#endif
// Here sampler_t should be function type scalar_t(void). For gpu
// "sampler" is a device function, but since ROCM doesn't have
// equivalent to nvstd::function, we use a template type parameter to
// capture it.
template<typename scalar_t, typename sampler_t>
struct BaseSampler {
sampler_t sampler;
C10_DEVICE BaseSampler(const sampler_t& sampler): sampler(sampler) {}
C10_DEVICE scalar_t sample() {
return sampler();
}
};
// The function `sample_gamma` is
// is adapted from Numpy's distributions.c implementation.
// It is MIT licensed, so here is the copyright:
/* Copyright 2005 Robert Kern ([email protected])
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
template<typename scalar_t, typename accscalar_t, typename uniform_sampler_t, typename normal_sampler_t>
C10_DEVICE scalar_t sample_gamma(scalar_t alpha, BaseSampler<accscalar_t, uniform_sampler_t>& standard_uniform, BaseSampler<accscalar_t, normal_sampler_t>& standard_normal) {
accscalar_t scale = 1.0f;
// Boost alpha for higher acceptance probability.
if (alpha < 1.0f) {
if (alpha == 0.f) return 0.f;
scale *= compat_pow(1 - standard_uniform.sample(), 1.0f / alpha);
alpha += 1.0f;
}
// This implements the acceptance-rejection method of Marsaglia and Tsang (2000)
// doi:10.1145/358407.358414
const accscalar_t d = alpha - 1.0f / 3.0f;
const accscalar_t c = 1.0f / compat_sqrt(9.0f * d);
for (;;) {
accscalar_t x, y;
do {
x = standard_normal.sample();
y = 1.0f + c * x;
} while (y <= 0);
const accscalar_t v = y * y * y;
const accscalar_t u = 1 - standard_uniform.sample();
const accscalar_t xx = x * x;
if (u < 1.0f - 0.0331f * xx * xx)
return static_cast<scalar_t>(scale * d * v);
if (compat_log(u) < 0.5f * xx + d * (1.0f - v + compat_log(v)))
return static_cast<scalar_t>(scale * d * v);
}
}
/* the functions stirling_approx_tail, binomial_inversion, and btrs are adapted
* from TensorFlow's random_binomial_op.cc implementation. That code is under
* copyright: 2019 The TensorFlow Authors.
*
* It was released under the Apache License, Version 2.0 (the "License"), available at:
* http://www.apache.org/licenses/LICENSE-2.0
*/
template<typename scalar_t>
C10_DEVICE scalar_t stirling_approx_tail(scalar_t k) {
const static scalar_t kTailValues[] = {
0.0810614667953272,
0.0413406959554092,
0.0276779256849983,
0.02079067210376509,
0.0166446911898211,
0.0138761288230707,
0.0118967099458917,
0.0104112652619720,
0.00925546218271273,
0.00833056343336287
};
if (k <= 9) {
return kTailValues[static_cast<size_t>(k)];
}
scalar_t kp1sq = (k + 1) * (k + 1);
return (1.0 / 12 - (1.0 / 360 - 1.0 / 1260 / kp1sq) / kp1sq) / (k + 1);
}
template<typename scalar_t, typename accscalar_t, typename uniform_sampler_t>
C10_DEVICE scalar_t binomial_inversion(scalar_t count, scalar_t prob, BaseSampler<accscalar_t, uniform_sampler_t>& standard_uniform) {
accscalar_t U;
accscalar_t geom_sum = 0;
scalar_t num_geom = 0;
accscalar_t logprob = compat_log1p(-prob);
while (true) {
U = standard_uniform.sample();
accscalar_t geom = compat_ceil(compat_log(U) / logprob);
geom_sum += geom;
if (geom_sum > count) {
break;
}
num_geom = num_geom + 1;
}
return num_geom;
}
template<typename scalar_t, typename accscalar_t, typename uniform_sampler_t>
C10_DEVICE scalar_t btrs(scalar_t count, scalar_t prob, BaseSampler<accscalar_t, uniform_sampler_t>& standard_uniform) {
scalar_t k;
accscalar_t U, V, us;
// This is spq in the paper.
const accscalar_t stddev = compat_sqrt(count * prob * (1 - prob));
// Other coefficients for Transformed Rejection sampling.
const accscalar_t b = 1.15 + 2.53 * stddev;
const accscalar_t a = -0.0873 + 0.0248 * b + 0.01 * prob;
const accscalar_t c = count * prob + 0.5;
const accscalar_t v_r = 0.92 - 4.2 / b;
const accscalar_t r = prob / (1 - prob);
const accscalar_t alpha = (2.83 + 5.1 / b) * stddev;
const accscalar_t m = compat_floor((count + 1) * prob);
while (true) {
U = standard_uniform.sample() - 0.5;
V = standard_uniform.sample();
us = 0.5 - compat_abs(U);
k = static_cast<scalar_t>(compat_floor((2 * a / us + b) * U + c));
// Reject non-sensical answers.
if (k < 0 || k > count) {
continue;
}
// Region for which the box is tight, and we can return our calculated value.
// This should happen 0.86 * v_r times. In the limit as n * p is large,
// the acceptance rate converges to ~79% (and in the lower regime it is ~24%).
if (us >= 0.07 && V <= v_r) {
return k;
}
// This deviates from Hormann's BTRS algorithm, as there is a log missing.
// For all (u, v) pairs outside of the bounding box, this calculates the
// transformed-reject ratio.
V = compat_log(V * alpha / (a / (us * us) + b));
accscalar_t upperbound =
((m + 0.5) * compat_log((m + 1) / (r * (count - m + 1))) +
(count + 1) * compat_log((count - m + 1) / (count - k + 1)) +
(k + 0.5) * compat_log(r * (count - k + 1) / (k + 1)) +
stirling_approx_tail<accscalar_t>(m) + stirling_approx_tail<accscalar_t>(count - m) -
stirling_approx_tail<accscalar_t>(k) - stirling_approx_tail<accscalar_t>(count - k));
if (V <= upperbound) {
return k;
}
}
}
template<typename scalar_t, typename accscalar_t, typename uniform_sampler_t>
C10_DEVICE scalar_t sample_binomial(scalar_t count, scalar_t prob, BaseSampler<accscalar_t, uniform_sampler_t>& standard_uniform) {
if (count <= 0.0 || prob <= 0.0) {
return 0;
} else if (prob >= 1.0) {
return count;
} else if (prob <= 0.5) {
if (count * prob >= 10.0) {
// btrs
return btrs<scalar_t, accscalar_t, uniform_sampler_t>(count, prob, standard_uniform);
} else {
// binomial inversion
return binomial_inversion<scalar_t, accscalar_t, uniform_sampler_t>(count, prob, standard_uniform);
}
} else if (prob > 0.5) {
scalar_t qprob = 1.0 - prob;
if (count * qprob >= 10.0) {
// btrs
return count - btrs<scalar_t, accscalar_t, uniform_sampler_t>(count, qprob, standard_uniform);
} else {
// count - binomial inversion
return count - binomial_inversion<scalar_t, accscalar_t, uniform_sampler_t>(count, qprob, standard_uniform);
}
} else {
// prob is nan?
return static_cast<scalar_t>(NAN);
}
}
/*
* This function is derived from the implementation of the digamma function in the Cephes Math Library.
* See note [3-Clause BSD License for the Cephes Math Library] in ATen/native/Math.h.
*/
template<typename scalar_t, typename accscalar_t>
C10_DEVICE inline scalar_t digamma_one(scalar_t x) {
constexpr accscalar_t PSI_10 = 2.25175258906672110764;
if (x == 0) {
return INFINITY;
}
accscalar_t additional_summand = 0;
int x_is_integer = x == compat_floor(x);
if (x < 0) {
if (x_is_integer) {
return INFINITY;
}
// it is more standard to write this as recursion, but
// nvcc does not like that
additional_summand = -c10::pi<scalar_t> /
compat_tan(c10::pi<scalar_t> * x);
x = 1 - x;
}
// Push x to be >= 10
accscalar_t result = 0;
while (x < 10) {
result -= 1 / x;
x += 1;
}
if (x == 10) {
return result + PSI_10 + additional_summand;
}
// Compute asymptotic digamma
static const accscalar_t A[] = {
8.33333333333333333333E-2,
-2.10927960927960927961E-2,
7.57575757575757575758E-3,
-4.16666666666666666667E-3,
3.96825396825396825397E-3,
-8.33333333333333333333E-3,
8.33333333333333333333E-2,
};
accscalar_t y = 0;
if (x < 1.0e17f) {
accscalar_t z = 1.0 / (x * x);
y = z * polevl<accscalar_t>(z, A, 6);
}
return static_cast<scalar_t>(
result + compat_log(x) - (0.5f / x) - y + additional_summand);
}
// Computes the reparameterized gradient -(d/dalpha cdf(x;alpha)) / pdf(x;alpha)
// for random number x drawn from a standard Gamma distribution Gamma(alpha).
template <typename scalar_t, typename accscalar_t>
C10_HOST_DEVICE scalar_t standard_gamma_grad_one(scalar_t alpha_, scalar_t x_) {
// Use a Taylor series expansion for small x.
accscalar_t x = static_cast<accscalar_t>(x_);
accscalar_t alpha = static_cast<accscalar_t>(alpha_);
if (x < 0.8f) {
accscalar_t numer = 1;
accscalar_t denom = alpha;
auto series1 = numer / denom;
auto series2 = numer / (denom * denom);
for (int i = 1; i <= 5; ++i) {
numer *= -x / static_cast<accscalar_t>(i);
denom += 1;
series1 += numer / denom;
series2 += numer / (denom * denom);
}
const auto pow_x_alpha = compat_pow(x, alpha);
const auto gamma_pdf = compat_pow(x, alpha - 1) * compat_exp(-x);
const auto gamma_cdf = pow_x_alpha * series1;
const auto gamma_cdf_alpha =
(compat_log(x) - digamma_one<accscalar_t, accscalar_t>(alpha)) *
gamma_cdf -
pow_x_alpha * series2;
const auto result = -gamma_cdf_alpha / gamma_pdf;
return isnan(result) ? static_cast<scalar_t>( 0.f ) : static_cast<scalar_t>(result);
}
// Use a Rice saddle point expansion for large alpha.
if (alpha > 8.0f) {
if (0.9f * alpha <= x && x <= 1.1f * alpha) {
const auto numer_1 = 1 + 24 * alpha * (1 + 12 * alpha);
const auto numer_2 = 1440 * (alpha * alpha) + 6 * x * (53 - 120 * x)
- 65 * x * x / alpha + alpha * (107 + 3600 * x);
const auto denom = 1244160 * (alpha * alpha) * (alpha * alpha);
return static_cast<scalar_t>(numer_1 * numer_2 / denom);
}
const auto denom = compat_sqrt(8 * alpha);
const auto term2 = denom / (alpha - x);
const auto term3 = compat_pow(
x - alpha - alpha * compat_log(x / alpha),
static_cast<accscalar_t>(-1.5));
const auto term23 = (x < alpha) ? term2 - term3 : term2 + term3;
const auto term1 = compat_log(x / alpha) * term23 -
compat_sqrt(2 / alpha) * (alpha + x) / ((alpha - x) * (alpha - x));
const auto stirling = 1 + 1 / (12 * alpha) * (1 + 1 / (24 * alpha));
const auto numer = x * term1;
return static_cast<scalar_t>(-stirling * numer / denom);
}
// Use a bivariate rational approximation to the reparameterized gradient.
const auto u = compat_log(x / alpha);
const auto v = compat_log(alpha);
static const accscalar_t coef_uv[3][8] = {
{0.16009398, -0.094634809, 0.025146376, -0.0030648343,
1, 0.32668115, 0.10406089, 0.0014179084},
{0.53487893, 0.1298071, 0.065735949, -0.0015649758,
0.16639465, 0.020070113, -0.0035938915, -0.00058392623},
{0.040121004, -0.0065914022, -0.0026286047, -0.0013441777,
0.017050642, -0.0021309326, 0.00085092367, -1.5247877e-07},
};
accscalar_t coef_v[8];
for (int i = 0; i < 8; ++ i) {
coef_v[i] = coef_uv[0][i] + u * (coef_uv[1][i] + u * coef_uv[2][i]);
}
const auto p = coef_v[0] + v * (coef_v[1] + v * (coef_v[2] + v * coef_v[3]));
const auto q = coef_v[4] + v * (coef_v[5] + v * (coef_v[6] + v * coef_v[7]));
return static_cast<scalar_t>(compat_exp(p / q));
}
// Approximate reparameterized gradient of Beta(x,alpha,beta) wrt alpha.
// Assumes x is close to zero and uses a Taylor expansion.
template <typename scalar_t, typename accscalar_t>
C10_DEVICE inline scalar_t _beta_grad_alpha_small(scalar_t x, scalar_t alpha, scalar_t beta) {
const scalar_t factor = digamma_one<scalar_t, accscalar_t>(alpha)
- digamma_one<scalar_t, accscalar_t>(alpha + beta) - compat_log(x);
scalar_t numer = 1;
scalar_t series = numer / alpha * (factor + 1 / alpha);
for (int i = 1; i <= 10; ++i) {
scalar_t casted_i = static_cast<scalar_t>(i);
numer *= (casted_i - beta) * x / casted_i;
const scalar_t denom = alpha + casted_i;
series += numer / denom * (factor + 1 / denom);
}
const scalar_t result = x * compat_pow(1 - x, -beta) * series;
return isnan(result) ? static_cast<scalar_t>( 0.f ) : result;
}
// Approximate reparameterized gradient of Beta(x,alpha,beta) wrt beta.
// Assumes x is close to zero and uses a Taylor expansion.
template <typename scalar_t, typename accscalar_t>
C10_DEVICE inline scalar_t _beta_grad_beta_small(scalar_t x, scalar_t alpha, scalar_t beta) {
const scalar_t factor = digamma_one<scalar_t, accscalar_t>(alpha + beta) - digamma_one<scalar_t, accscalar_t>(beta);
scalar_t numer = 1, betas = 1, dbetas = 0, series = factor / alpha;
for (int i = 1; i <= 8; ++i) {
scalar_t casted_i = static_cast<scalar_t>(i);
numer *= -x / casted_i;
dbetas = dbetas * (beta - casted_i) + betas;
betas = betas * (beta - casted_i);
series += numer / (alpha + casted_i) * (dbetas + factor * betas);
}
const scalar_t result = -compat_pow(1 - x, 1 - beta) * series;
return isnan(result) ? static_cast<scalar_t>( 0.f ) : result;
}
// Approximate reparameterized gradient of Beta(x,alpha,beta) wrt alpha.
// Assumes alpha and beta are both large and uses a Rice saddle point expansion.
// To ensure numerical stability, this computation is performed at higher precision.
template<typename scalar_t, typename accscalar_t>
C10_DEVICE inline scalar_t _beta_grad_alpha_mid(accscalar_t x, accscalar_t alpha, accscalar_t beta) {
const accscalar_t total = alpha + beta;
const accscalar_t mean = alpha / total;
const accscalar_t std = compat_sqrt(alpha * beta / (total + 1)) / total;
if (mean - 0.1 * std <= x && x <= mean + 0.1 * std) {
// Avoid the singularity at x = mean.
const accscalar_t poly = 47 * x * (beta * beta) * (beta * beta) + alpha * (
(43 + 20 * (16 + 27 * beta) * x) * (beta * beta) * beta + alpha * (
3 * (59 + 180 * beta - 90 * x) * (beta * beta) + alpha * (
(453 + 1620 * beta * (1 - x) - 455 * x) * beta + alpha * (
8 * (1 - x) * (135 * beta - 11)))));
const accscalar_t prefactor_num = (1 + 12 * alpha) * (1 + 12 * beta) / (total * total);
const accscalar_t prefactor_den = 12960 * alpha * alpha * alpha * beta * beta * (1 + 12 * total);
return prefactor_num / (1 - x) * poly / prefactor_den;
}
const accscalar_t prefactor = -x / compat_sqrt(2 * alpha * beta / total);
const accscalar_t stirling = (1 + 1 / (12 * alpha) + 1 / (288 * alpha * alpha))
* (1 + 1 / (12 * beta) + 1 / (288 * beta * beta))
/ (1 + 1 / (12 * total) + 1 / (288 * total * total));
const accscalar_t term1_num = 2 * (alpha * alpha) * (x - 1) + alpha * beta * (x - 1) - x * (beta * beta);
const accscalar_t axbx = alpha * (x - 1) + beta * x;
const accscalar_t term1_den = compat_sqrt(2 * alpha / beta) * compat_pow(total, static_cast<accscalar_t>(1.5f)) * axbx * axbx;
const accscalar_t term1 = term1_num / term1_den;
const accscalar_t term2 = 0.5f * compat_log(alpha / (total * x));
const accscalar_t term3_num = compat_sqrt(8 * alpha * beta / total);
const accscalar_t term3_den = beta * x + alpha * (x - 1);
const accscalar_t term3 = term3_num / term3_den;
const accscalar_t term4_base = beta * compat_log(beta / (total * (1 - x))) +
alpha * compat_log(alpha / (total * x));
const accscalar_t term4 = compat_pow(term4_base, static_cast<accscalar_t>(-1.5f));
const accscalar_t term1234 = term1 + term2 * (term3 + (x < mean ? term4 : -term4));
return static_cast<scalar_t>(stirling * prefactor * term1234);
}
// Computes a scaled reparameterized gradient
// -(d/dalpha cdf(x;alpha,beta)) / pdf(x;alpha,beta) / (1-x)
// for random number x drawn from a Beta distribution Beta(alpha,beta).
// This function inputs total=alpha+beta to make it easy to implement
// Dirichlet reparameterized gradients in terms of Betas.
template<typename scalar_t, typename accscalar_t>
C10_HOST_DEVICE inline scalar_t dirichlet_grad_one(scalar_t x, scalar_t alpha, scalar_t total) {
accscalar_t x_ = static_cast<accscalar_t>(x);
accscalar_t alpha_ = static_cast<accscalar_t>(alpha);
accscalar_t total_ = static_cast<accscalar_t>(total);
const scalar_t beta = total - alpha;
const accscalar_t beta_ = total_ - alpha_;
const scalar_t boundary = total * x * (1 - x);
// Use an asymptotic approximation for x close to 0.
if (x <= 0.5f && boundary < 2.5f) {
return _beta_grad_alpha_small<scalar_t, accscalar_t>(x, alpha, beta);
}
// Use an asymptotic approximation for x close to 1.
if (x >= 0.5f && boundary < 0.75f) {
return -_beta_grad_beta_small<scalar_t, accscalar_t>(1 - x, beta, alpha);
}
// Use an asymptotic approximation when alpha and (total - alpha) are both large.
if (alpha > 6 && beta > 6) {
return _beta_grad_alpha_mid<scalar_t, accscalar_t>(x_, alpha_, beta_);
}
// Use a rational correction to an analytic approximation.
static const accscalar_t c[2][3][3][4] = {
{{{1.003668233, -0.01061107488, -0.0657888334, 0.01201642863},
{0.6336835991, -0.3557432599, 0.05486251648, -0.001465281033},
{-0.03276231906, 0.004474107445, 0.002429354597, -0.0001557569013}},
{{0.221950385, -0.3187676331, 0.01799915743, 0.01074823814},
{-0.2951249643, 0.06219954479, 0.01535556598, 0.001550077057},
{0.02155310298, 0.004170831599, 0.001292462449, 6.976601077e-05}},
{{-0.05980841433, 0.008441916499, 0.01085618172, 0.002319392565},
{0.02911413504, 0.01400243777, -0.002721828457, 0.000751041181},
{0.005900514878, -0.001936558688, -9.495446725e-06, 5.385558597e-05}}},
{{{1, -0.02924021934, -0.04438342661, 0.007285809825},
{0.6357567472, -0.3473456711, 0.05454656494, -0.002407477521},
{-0.03301322327, 0.004845219414, 0.00231480583, -0.0002307248149}},
{{0.5925320577, -0.1757678135, 0.01505928619, 0.000564515273},
{0.1014815858, -0.06589186703, 0.01272886114, -0.0007316646956},
{-0.007258481865, 0.001096195486, 0.0003934994223, -4.12701925e-05}},
{{0.06469649321, -0.0236701437, 0.002902096474, -5.896963079e-05},
{0.001925008108, -0.002869809258, 0.0008000589141, -6.063713228e-05},
{-0.0003477407336, 6.959756487e-05, 1.097287507e-05, -1.650964693e-06}}},
};
const accscalar_t u = compat_log(x_);
const accscalar_t a = compat_log(alpha_) - u;
const accscalar_t b = compat_log(total_) - a;
const accscalar_t pow_u[3] = {1, u, u * u};
const accscalar_t pow_a[3] = {1, a, a * a};
accscalar_t p = 0.0;
accscalar_t q = 0.0;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
const accscalar_t ua = pow_u[i] * pow_a[j];
p += ua * (c[0][i][j][0] + b * (c[0][i][j][1] + b * (c[0][i][j][2] + b * c[0][i][j][3])));
q += ua * (c[1][i][j][0] + b * (c[1][i][j][1] + b * (c[1][i][j][2] + b * c[1][i][j][3])));
}
}
const accscalar_t approx = x_ * (digamma_one<scalar_t, accscalar_t>(total_) - digamma_one<scalar_t, accscalar_t>(alpha_)) / beta_;
return static_cast<scalar_t>(p / q * approx);
}
} // namespace