From 0f2fd42cbc5b5b624536f6918389f18fc4ab5ecd Mon Sep 17 00:00:00 2001 From: Tina Torabi Date: Thu, 22 Feb 2024 00:46:15 -0800 Subject: [PATCH] Update ComplexElliptic.jl --- src/ComplexElliptic.jl | 116 +++++++++++++---------------------------- 1 file changed, 37 insertions(+), 79 deletions(-) diff --git a/src/ComplexElliptic.jl b/src/ComplexElliptic.jl index 685e197..698089d 100644 --- a/src/ComplexElliptic.jl +++ b/src/ComplexElliptic.jl @@ -69,93 +69,51 @@ end return K_, Kp end - - function ellipjc(u, L; flag=false) + u = u isa Array ? u : [u] + if !flag + KK, Kp = ellipkkp(L) + high = imag.(u) .> real(Kp) / 2 + u[high] = im * Kp .- u[high] + m = exp(-2 * pi * L) + else + high = falses(size(u)) + m = L + end - if length(u) == 1 - u = complex(u) - if !flag - L_= exp(-2 * π * L) - K, Kp = ellipkkp(L_)[1], ellipkkp(1-L_)[1] - high = imag(u) > Kp / 2 - if high - u = im * Kp - u - end - m = exp(-2 * pi * L) - else - high = false - m = L - end - - if m < 6eps(Float64) - sinu = sin(u) - cosu = cos(u) - sn = sinu + m / 4 * (sinu .* cosu - u) .* cosu - cn = cosu - m / 4 * (sinu .* cosu - u) .* sinu - dn = 1 - m / 4 * (sinu .^ 2 - cosu .^ 2) - else - kappa = m > 1e-3 ? (1 - sqrt(1 - m)) / (1 + sqrt(1 - m)) : polyval([132.0, 42.0, 14.0, 5.0, 2.0, 1.0, 0.0], m / 4.0) - mu = kappa^2 - v = u / (1 + kappa) - sn1, cn1, dn1 = ellipjc(v, mu, true) - - denom = 1 + kappa .* sn1 .^ 2 - sn = (1 + kappa) .* sn1 ./ denom - cn = cn1 .* dn1 ./ denom - dn = (1 - kappa .* sn1 .^ 2) ./ denom - end - - if high - sn = -1 / (sqrt(m) * sn) - cn = im * dn / (sqrt(m) * sn) - dn = im * cn / sn - end + if abs(m) < 6eps(Float64) + sinu = sin.(u) + cosu = cos.(u) + sn = sinu + m / 4 * (sinu .* cosu - u) .* cosu + cn = cosu - m / 4 * (sinu .* cosu - u) .* sinu + dn = 1 .+ m / 4 .* (cosu .^ 2 - sinu .^ 2 .- 1) else - u = complex(u) - if !flag - KK, Kp = ellipkkp(L) - high = imag.(u) .> real(Kp) / 2 - u[high] = im * Kp .- u[high] - m = exp(-2 * pi * L) - else - high = falses(size(u)) - m = L - end - - if abs(m) < 6eps(Float64) - sinu = sin.(u) - cosu = cos.(u) - sn = sinu + m / 4 * (sinu .* cosu - u) .* cosu - cn = cosu - m / 4 * (sinu .* cosu - u) .* sinu - dn = 1 .+ m / 4 .* (cosu .^ 2 - sinu .^ 2 .- 1) + if abs(m) > 1e-3 + kappa = (1 - sqrt(Complex(1 - m))) / (1 + sqrt(Complex(1 - m))) else - if abs(m) > 1e-3 - kappa = (1 - sqrt(Complex(1 - m))) / (1 + sqrt(Complex(1 - m))) - else - kappa = polyval(Complex{Float64}.([132.0, 42.0, 14.0, 5.0, 2.0, 1.0, 0.0]), Complex{Float64}(m / 4.0)) - end - mu = kappa ^ 2 - v = u ./ (1 + kappa) - sn1, cn1, dn1 = ellipjc(v, mu, flag=true) - - denom = 1 .+ kappa .* sn1 .^ 2 - sn = (1 .+ kappa) .* sn1 ./ denom - cn = cn1 .* dn1 ./ denom - dn = (1 .- kappa .* sn1 .^ 2) ./ denom - end - - if any(high) - snh = sn[high] - cnh = cn[high] - dnh = dn[high] - sn[high] = -1 ./ (sqrt(m) * snh) - cn[high] = im * dnh ./ (sqrt(m) * snh) - dn[high] = im * cnh ./ snh + kappa = polyval(Complex{Float64}.([132.0, 42.0, 14.0, 5.0, 2.0, 1.0, 0.0]), Complex{Float64}(m / 4.0)) end + mu = kappa ^ 2 + v = u ./ (1 + kappa) + sn1, cn1, dn1 = ellipjc(v, mu, flag=true) + + denom = 1 .+ kappa .* sn1 .^ 2 + sn = (1 .+ kappa) .* sn1 ./ denom + cn = cn1 .* dn1 ./ denom + dn = (1 .- kappa .* sn1 .^ 2) ./ denom + end + + if any(high) + snh = sn[high] + cnh = cn[high] + dnh = dn[high] + sn[high] = -1 ./ (sqrt(m) * snh) + cn[high] = im * dnh ./ (sqrt(m) * snh) + dn[high] = im * cnh ./ snh end return sn, cn, dn end + end # module ComplexElliptic