-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathObjReader.cpp
324 lines (267 loc) · 10.9 KB
/
ObjReader.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
//--------------------------------------------------------------------------------------
//lightwave .Obj file reader
//
//note: this code only handles polys with 30 or fewer sides
//
//--------------------------------------------------------------------------------------
// (C) 2005 ATI Research, Inc., All rights reserved.
//--------------------------------------------------------------------------------------
#include "ObjReader.h"
#include "VectorMacros.h"
ObjReader::ObjReader(void)
{
mNumIndex = 0;
mNumVertex= 0;
mIndex = NULL;
mPosition = NULL;
mNormal = NULL;
mTexCoord = NULL;
mRawIndexTranslation = NULL;
mNumRawPosition = 0;
mNumRawNormal = 0;
mNumRawTexCoord = 0;
mNumRawIndex = 0;
mRawPosition = NULL;
mRawNormal = NULL;
mRawTexCoord = NULL;
}
bool8 ObjReader::LoadObj(char8 *aFilename)
{
FILE *ifp;
char8 ch1, ch2, charBuffer[4096], valStr[20][4096];
uint32 numRead;
uint32 rawPositionIdx = 0;
uint32 rawNormalIdx = 0;
uint32 rawTexCoordIdx = 0;
uint32 i;
//first pass to count number of elements in each array
errno_t result = fopen_s( &ifp, aFilename, "r" );
if( result != 0 )
{
return false;
}
while (!feof(ifp))
{
fgets(charBuffer, 4096, ifp);
numRead = sscanf_s(charBuffer, "%c%c%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", &ch1, &ch2,
&valStr[0][0], &valStr[1][0], &valStr[2][0], &valStr[3][0], &valStr[4][0],
&valStr[5][0], &valStr[6][0], &valStr[7][0], &valStr[8][0], &valStr[9][0],
&valStr[10][0], &valStr[11][0], &valStr[12][0], &valStr[13][0], &valStr[14][0],
&valStr[15][0], &valStr[16][0], &valStr[17][0], &valStr[18][0], &valStr[19][0]
);
switch(ch1)
{
case 'g':
break;
case 'v':
if(ch2 == ' ')
{
mNumRawPosition++;
}
else if(ch2 == 'n')
{
mNumRawNormal++;
}
else if(ch2 == 't')
{
mNumRawTexCoord++;
}
break;
case 'f':
mNumRawIndex += (numRead - 4) * 3;
break;
}
}
//second pass to load in raw data
fseek(ifp, 0, SEEK_SET);
rawPositionIdx = 0;
rawNormalIdx = 0;
rawTexCoordIdx = 0;
mRawPosition = new float32 [mNumRawPosition * 3];
mRawNormal = new float32 [mNumRawNormal * 3];
mRawTexCoord = new float32 [mNumRawTexCoord * 2];
mIndex = new uint32 [mNumRawIndex];
//for now allocate max size, and end of index condensing, reallocate arrays to optimal size
mPosition = new float32 [mNumRawIndex * 3];
mNormal = new float32 [mNumRawIndex * 3];
mTexCoord = new float32 [mNumRawIndex * 2];
mRawIndexTranslation = new uint32 [mNumRawIndex * 3];
while (!feof(ifp))
{
fgets(charBuffer, 4096, ifp);
//numRead = sscanf(charBuffer, "%c%c%s%s%s%s\n", &ch1, &ch2, &valStr[0][0], &valStr[1][0], &valStr[2][0], &valStr[3][0]);
numRead = sscanf_s(charBuffer, "%c%c%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", &ch1, &ch2,
&valStr[0][0], &valStr[1][0], &valStr[2][0], &valStr[3][0], &valStr[4][0],
&valStr[5][0], &valStr[6][0], &valStr[7][0], &valStr[8][0], &valStr[9][0],
&valStr[10][0], &valStr[11][0], &valStr[12][0], &valStr[13][0], &valStr[14][0],
&valStr[15][0], &valStr[16][0], &valStr[17][0], &valStr[18][0], &valStr[19][0]
);
switch(ch1)
{
case 'g':
break;
case 'v':
if(ch2 == ' ')
{
mRawPosition [rawPositionIdx * 3 + 0] = (float32) atof(&valStr[0][0]);
mRawPosition [rawPositionIdx * 3 + 1] = (float32) atof(&valStr[1][0]);
mRawPosition [rawPositionIdx * 3 + 2] = (float32) atof(&valStr[2][0]);
rawPositionIdx ++;
}
else if(ch2 == 'n')
{
mRawNormal [rawNormalIdx * 3 + 0] = (float32) atof(&valStr[0][0]);
mRawNormal [rawNormalIdx * 3 + 1] = (float32) atof(&valStr[1][0]);
mRawNormal [rawNormalIdx * 3 + 2] = (float32) atof(&valStr[2][0]);
rawNormalIdx ++;
}
else if(ch2 == 't')
{
mRawTexCoord [rawTexCoordIdx * 2 + 0] = (float32) atof(&valStr[0][0]);
mRawTexCoord [rawTexCoordIdx * 2 + 1] = (float32) atof(&valStr[1][0]);
rawTexCoordIdx ++;
}
break;
case 'f':
//pack raw indices into array
uint32 rawIndices[OR_MAX_FACE_VERTS][3];
if(numRead < 5)
{
//error: face has less than 3 sides
break;
}
for(i = 0; i < (numRead - 2); i++)
{
sscanf_s(&valStr[i][0], "%d/%d/%d", &rawIndices[i][0], &rawIndices[i][1], &rawIndices[i][2] );
//convert indices to zero base instead of 1 base
rawIndices[i][0]--;
rawIndices[i][1]--;
rawIndices[i][2]--;
}
for(i = 0; i < (numRead - 4); i++) //convert face polygon into a triangle fan e.g. (0,1,2) (0,2,3) (0,3,4) etc..
{ //note that the first index looks funny (0, i+1, i+2) but is correct..
mIndex [mNumIndex + 0] = LookupCreateIndex(rawIndices[0][0], rawIndices[0][1], rawIndices[0][2]);
mIndex [mNumIndex + 1] = LookupCreateIndex(rawIndices[1+i][0], rawIndices[1+i][1], rawIndices[1+i][2]);
mIndex [mNumIndex + 2] = LookupCreateIndex(rawIndices[2+i][0], rawIndices[2+i][1], rawIndices[2+i][2]);
mNumIndex += 3;
}
break;
}
}
//delete unnecessary raw data arrays
delete [] mRawIndexTranslation;
delete [] mRawPosition;
delete [] mRawNormal;
delete [] mRawTexCoord;
CalculateTangentSpace();
return TRUE;
}
/*******************************************************************************************
Looks up the final index using the three array raw data indices, if the index does not
exist, create a new vertex.
********************************************************************************************/
uint32 ObjReader::LookupCreateIndex(uint32 rawPosIdx, uint32 rawTexCoordIdx, uint32 rawNormIdx)
{
uint32 i;
for(i = 0; i < mNumVertex; i++)
{
if((rawPosIdx == mRawIndexTranslation[i * 3 + 0] ) &&
(rawNormIdx == mRawIndexTranslation[i * 3 + 1] ) &&
(rawTexCoordIdx == mRawIndexTranslation[i * 3 + 2] )
)
{
return i;
}
}
//add new vertex and index
mPosition [mNumVertex * 3 + 0] = mRawPosition [rawPosIdx * 3 + 0];
mPosition [mNumVertex * 3 + 1] = mRawPosition [rawPosIdx * 3 + 1];
mPosition [mNumVertex * 3 + 2] = mRawPosition [rawPosIdx * 3 + 2];
mTexCoord [mNumVertex * 2 + 0] = mRawTexCoord [rawTexCoordIdx * 2 + 0];
mTexCoord [mNumVertex * 2 + 1] = mRawTexCoord [rawTexCoordIdx * 2 + 1];
mNormal [mNumVertex * 3 + 0] = mRawNormal [rawNormIdx * 3 + 0];
mNormal [mNumVertex * 3 + 1] = mRawNormal [rawNormIdx * 3 + 1];
mNormal [mNumVertex * 3 + 2] = mRawNormal [rawNormIdx * 3 + 2];
mRawIndexTranslation[mNumVertex * 3 + 0] = rawPosIdx;
mRawIndexTranslation[mNumVertex * 3 + 1] = rawNormIdx;
mRawIndexTranslation[mNumVertex * 3 + 2] = rawTexCoordIdx;
mNumVertex++;
return (mNumVertex - 1);
}
/**************************************************************
Calculates tangent space vectors for the .obj
**************************************************************/
void ObjReader::CalculateTangentSpace(void)
{
uint32 triIndex[3];
float32 vec3PosEdge0[3];
float32 vec3PosEdge1[3];
float32 vec2TexEdge0[2];
float32 vec2TexEdge1[2];
float32 f32TanWeight[2];
float32 f32Det;
float32 vec3Tmp0[3];
float32 vec3Tmp1[3];
uint32 i, k;
// perTriTangentU = new float32 [mNumIndex / 3 * 3];
// perTriTangentV = new float32 [mNumIndex / 3 * 3];
mTangentU = new float32 [mNumVertex * 3];
mTangentV = new float32 [mNumVertex * 3];
//zero out tangent space vectors
for(i = 0; i < mNumVertex * 3; i++)
{
mTangentU[i] = 0.0f;
mTangentV[i] = 0.0f;
}
//loop over triangles to build up a tangent and binormal per vertex
// for the 3 verts associated with the triangle, the tangents are accumulated
// per vertex
for(i = 0; i < (mNumIndex / 3); i++)
{
for(k = 0; k < 3; k++)
{
triIndex[k] = mIndex[i * 3 + k];
}
//calc edge positon and tex coord vectors
VM_SUB3(vec3PosEdge0, &mPosition[triIndex[1] * 3], &mPosition[triIndex[0] * 3]);
VM_SUB3(vec3PosEdge1, &mPosition[triIndex[2] * 3], &mPosition[triIndex[0] * 3]);
VM_SUB2(vec2TexEdge0, &mTexCoord[triIndex[1] * 2], &mTexCoord[triIndex[0] * 2]);
VM_SUB2(vec2TexEdge1, &mTexCoord[triIndex[2] * 2], &mTexCoord[triIndex[0] * 2]);
/*
Solving linear equation for tangent space u:
|du0 du1||w0| = |1|
|dv0 dv1||w1| |0|
*/
f32Det=(vec2TexEdge0[0] * vec2TexEdge1[1]) - (vec2TexEdge1[0] * vec2TexEdge0[1]);
f32TanWeight[0] = vec2TexEdge1[1] / f32Det;
f32TanWeight[1] = -vec2TexEdge0[1] / f32Det;
VM_SCALE3(vec3Tmp0, vec3PosEdge0, f32TanWeight[0]);
VM_SCALE3(vec3Tmp1, vec3PosEdge1, f32TanWeight[1]);
VM_ADD3(vec3Tmp0, vec3Tmp0, vec3Tmp1);
//accumulate tangent space U vectors
VM_ADD3(&mTangentU[triIndex[0] * 3], &mTangentU[triIndex[0] * 3], vec3Tmp0);
VM_ADD3(&mTangentU[triIndex[1] * 3], &mTangentU[triIndex[1] * 3], vec3Tmp0);
VM_ADD3(&mTangentU[triIndex[2] * 3], &mTangentU[triIndex[2] * 3], vec3Tmp0);
/*********************************************************
Solving linear equation for tangent space V:
|du0 du1||w0| = |0|
|dv0 dv1||w1| |1|
re-use previous determinant...
*********************************************************/
f32TanWeight[0] = -vec2TexEdge1[0] / f32Det;
f32TanWeight[1] = vec2TexEdge0[0] / f32Det;
VM_SCALE3(vec3Tmp0, vec3PosEdge0, f32TanWeight[0]);
VM_SCALE3(vec3Tmp1, vec3PosEdge1, f32TanWeight[1]);
VM_ADD3(vec3Tmp0, vec3Tmp0, vec3Tmp1);
//accumulate tangent space V vectors
VM_ADD3(&mTangentV[triIndex[0] * 3], &mTangentV[triIndex[0] * 3], vec3Tmp0);
VM_ADD3(&mTangentV[triIndex[1] * 3], &mTangentV[triIndex[1] * 3], vec3Tmp0);
VM_ADD3(&mTangentV[triIndex[2] * 3], &mTangentV[triIndex[2] * 3], vec3Tmp0);
}
//normalize tangent space vectors
for(i = 0; i < mNumVertex; i++)
{
VM_NORM3(&mTangentU[i * 3], &mTangentU[i * 3]);
VM_NORM3(&mTangentV[i * 3], &mTangentV[i * 3]);
}
}