-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGraph.cpp
171 lines (141 loc) · 5.24 KB
/
Graph.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// Copyright 2019 Tim Kaler MIT License
#include <random>
#include <vector>
#include "./Graph.hpp"
#include "./activations.hpp"
void Graph::setup_embeddings(std::vector<int> _embedding_dim_list) {
weights.clear();
skip_weights.clear();
this->embedding_dim_list = _embedding_dim_list;
for (int i = 0; i < embedding_dim_list.size()-1; i++) {
weights.push_back(aMatrix(embedding_dim_list[i+1], embedding_dim_list[i]));
skip_weights.push_back(aMatrix(embedding_dim_list[i+1], embedding_dim_list[i]));
std::cout << embedding_dim_list[i+1] << "," << embedding_dim_list[i] << std::endl;
}
std::cout << "randomizing the embeddings" << std::endl;
std::default_random_engine generator(42);
std::uniform_real_distribution<double> distribution(0.0, 1.0);
for (int i = 0; i < weights.size(); i++) {
float w = 1.0/(weights[i].dimensions()[0]*weights[i].dimensions()[1]);
for (int j = 0; j < weights[i].dimensions()[0]; j++) {
for (int k = 0; k < weights[i].dimensions()[1]; k++) {
weights[i](j,k) = distribution(generator)*w;
skip_weights[i](j,k) = distribution(generator)*w;
}
}
}
}
Graph::Graph(int num_vertices) {
this->num_vertices = num_vertices;
adj.resize(num_vertices);
}
Real Graph::edge_weight(int v, int u) {
return 1.0/sqrt(1.0*(adj[v].size())*(adj[u].size()));
}
void Graph::add_edge(int u, int v) {
adj[u].push_back(v);
}
void Graph::generate_random_initial_embeddings() {
std::default_random_engine gen;
std::normal_distribution<double> distribution(1.0, 2.0);
int d1 = embedding_dim_list[0];
for (int i = 0; i < this->num_vertices; i++) {
Matrix initial_embedding(d1, 1);
for (int j = 0; j < d1; j++) {
initial_embedding[j] = distribution(gen);
}
vertex_first_embeddings.push_back(initial_embedding);
}
}
void Graph::set_initial_embeddings(std::vector<Matrix>& initial_embeddings) {
vertex_first_embeddings = initial_embeddings;
}
aMatrix* reduce_mat(aMatrix** mat_arr, int start, int end) {
if (end - start < 5) {
aMatrix* ret = mat_arr[start];
for (int i = start+1; i < end; i++) {
*ret += *(mat_arr[i]);
}
return ret;
} else {
int size = end-start;
int start1 = start;
int end1 = start + size/2;
int start2 = end1;
int end2 = end;
aMatrix* left = cilk_spawn reduce_mat(mat_arr, start1, end1);
aMatrix* right = reduce_mat(mat_arr, start2, end2);
cilk_sync;
*left += *right;
return left;
//return left+right;
}
}
aMatrix Graph::get_embedding(int vid, int layer, std::vector<std::vector<aMatrix> >& embeddings) {
if (layer == 0) {
Matrix initial_embedding = vertex_first_embeddings[vid];
// don't apply the activation function on the initial embeddings.
return (weights[0]**initial_embedding);
} else {
//aMatrix ret(embedding_dim_list[layer+1], 1);
//for (int i = 0; i < ret.dimensions()[0]; i++) {
// for (int j = 0; j < ret.dimensions()[1]; j++) {
// ret[i][j] = 0.0;
// }
//}
// NOTE(TFK): This is a bit of a nonsense way to implement a bias term,
// remnant of a hacky experiment.
//aMatrix bias_(embedding_dim_list[layer], 1);
//for (int i = 0; i < bias_.dimensions()[0]; i++) {
// for (int j = 0; j < bias_.dimensions()[1]; j++) {
// bias_[i][j] = 0.0;
// }
//}
//bias_[0][0] = 1.0;
aMatrix pre_ret = edge_weight(vid,vid) * embeddings[layer-1][vid];
if (adj[vid].size() > 5 && false) {
aMatrix** ret_arr = (aMatrix**) malloc(sizeof(aMatrix*) * adj[vid].size());
cilk_for (int i = 0; i < adj[vid].size(); i++) {
if (adj[vid][i]==vid) {
ret_arr[i] = new aMatrix(embeddings[layer-1][vid].dimensions()[0], embeddings[layer-1][vid].dimensions()[1]);
for (int k = 0; k < ret_arr[i]->dimensions()[0]; k++) {
for (int j = 0; j < ret_arr[i]->dimensions()[1]; j++) {
(*ret_arr[i])(k,j) = 0;
}
}
continue;
}
Real eweight = edge_weight(vid, adj[vid][i]);
ret_arr[i] = new aMatrix(embeddings[layer-1][vid].dimensions()[0], embeddings[layer-1][vid].dimensions()[1]);
*(ret_arr[i]) = eweight*embeddings[layer-1][adj[vid][i]];
//ret_arr[i] = eweight*embeddings[layer-1][adj[vid][i]];
}
pre_ret += *(reduce_mat(ret_arr, 0, adj[vid].size()));
cilk_for (int i = 0; i < adj[vid].size(); i++) {
delete ret_arr[i];
}
free(ret_arr);
} else {
for (int i = 0; i < adj[vid].size(); i++) {
if (adj[vid][i]==vid) continue;
Real eweight = edge_weight(vid, adj[vid][i]);
pre_ret += eweight*embeddings[layer-1][adj[vid][i]];
}
}
aMatrix ret = mmul(weights[layer], pre_ret);
//ret = mmul(skip_weights[layer], embeddings[layer-1][vid]);
//for (int i = 0; i < adj[vid].size(); i++) {
// if (adj[vid][i] == vid) continue;
// Real eweight = edge_weight(vid, adj[vid][i]);
// ret += eweight*mmul(weights[layer], embeddings[layer-1][adj[vid][i]]);
//}
if (layer == embedding_dim_list.size()-2) {
return tfksig(ret);
} else {
return tfksig(ret);
}
}
}
aMatrix Graph::get_embedding(int vid, std::vector<std::vector<aMatrix> >& embeddings) {
return embeddings[embedding_dim_list.size()-2][vid];
}