forked from allenai/unifiedqa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtasks.py
156 lines (142 loc) · 4.57 KB
/
tasks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import logging
import t5
import os
import json
import functools
import tensorflow as tf
import tensorflow_datasets as tfds
DATASETS = [
"ai2_science_middle",
"ai2_science_elementary",
"arc_hard",
"arc_easy",
"mctest",
"mctest_corrected_the_separator",
"natural_questions",
"quoref",
"squad1_1",
"squad2",
"boolq",
"multirc",
"newsqa",
"race_string",
"ropes",
"drop",
"narrativeqa",
"openbookqa",
"qasc",
"boolq_np",
"contrast_sets_boolq",
"contrast_sets_drop",
"contrast_sets_quoref",
"contrast_sets_ropes",
"commonsenseqa",
"qasc_with_ir",
"openbookqa_with_ir",
"arc_easy_with_ir",
"arc_hard_with_ir",
"ambigqa",
"natural_questions_direct_ans",
"natural_questions_with_dpr_para",
"winogrande_xs",
"winogrande_s",
"winogrande_m",
"winogrande_l",
"winogrande_xl",
"social_iqa",
"physical_iqa",
]
DATA_DIR = f"gs://unifiedqa/data/"
def dataset_preprocessor(ds):
def normalize_text(text):
"""Lowercase and remove quotes from a TensorFlow string."""
text = tf.strings.lower(text)
text = tf.strings.regex_replace(text, "'(.*)'", r"\1")
return text
def to_inputs_and_targets(ex):
return {
"inputs": normalize_text(ex["inputs"]),
"targets": normalize_text(ex["targets"])
}
return ds.map(to_inputs_and_targets,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
def get_path(data_dir1, split):
tsv_path = {
"train": os.path.join(data_dir1, "train.tsv"),
"dev": os.path.join(data_dir1, "dev.tsv"),
"test": os.path.join(data_dir1, "test.tsv")
}
return tsv_path[split]
def dataset_fn(split, shuffle_files=False, dataset=""):
# We only have one file for each split.
del shuffle_files
# Load lines from the text file as examples.
ds = tf.data.TextLineDataset(get_path(DATA_DIR + dataset, split))
# Split each "<question>\t<answer>" example into (question, answer) tuple.
print(" >>>> about to read csv . . . ")
ds = ds.map(
functools.partial(tf.io.decode_csv, record_defaults=["", ""],
field_delim="\t", use_quote_delim=False),
num_parallel_calls=tf.data.experimental.AUTOTUNE)
# print(" >>>> after reading csv . . . ")
# Map each tuple to a {"question": ... "answer": ...} dict.
ds = ds.map(lambda *ex: dict(zip(["inputs", "targets"], ex)))
# print(" >>>> after mapping . . . ")
return ds
for dataset in DATASETS:
print(f" >>>> reading dataset: {dataset}")
t5.data.set_tfds_data_dir_override(DATA_DIR + dataset)
t5.data.TaskRegistry.add(
f"{dataset}_task",
# Supply a function which returns a tf.data.Dataset.
dataset_fn=functools.partial(dataset_fn, dataset=dataset),
splits=["train", "dev", "test"],
# Supply a function which preprocesses text from the tf.data.Dataset.
text_preprocessor=[dataset_preprocessor],
# Use the same vocabulary that we used for pre-training.
sentencepiece_model_path=t5.data.DEFAULT_SPM_PATH,
# Lowercase targets before computing metrics.
postprocess_fn=t5.data.postprocessors.lower_text,
metric_fns=[t5.evaluation.metrics.accuracy],
)
print(f" >>>> adding one mixture per dataset: `{dataset}_mixture`")
t5.data.MixtureRegistry.add(
f"{dataset}_mixture", [f"{dataset}_task"], default_rate=1.0
)
# dataset-pair mixtures
for dataset1 in DATASETS:
for dataset2 in DATASETS:
if dataset1 == dataset2:
continue
print(f" >>>> adding one mixture for dataset-pair: `{dataset1}_{dataset2}_mixture`")
t5.data.MixtureRegistry.add(
f"{dataset1}_{dataset2}_mixture",
[f"{dataset1}_task", f"{dataset2}_task"],
default_rate=1.0
)
# union model: used for training UnifiedQA
union_datasets = [
"narrativeqa",
"ai2_science_middle", "ai2_science_elementary",
"arc_hard", "arc_easy",
"mctest_corrected_the_separator",
"squad1_1", "squad2",
"boolq",
"race_string",
"openbookqa",
]
print(f" >>>> adding one mixture for `union_mixture`")
t5.data.MixtureRegistry.add(
f"union_mixture",
[f"{d}_task" for d in union_datasets],
default_rate=1.0
)
# leave-one-out
for dd in union_datasets:
filtered_datasets = [f"{d}_task" for d in union_datasets if d != dd]
assert len(filtered_datasets) < len(union_datasets)
t5.data.MixtureRegistry.add(
f"union_minus_{dd}_mixture",
filtered_datasets,
default_rate=1.0
)