-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.typ
1106 lines (879 loc) · 28.5 KB
/
main.typ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#set text(
font: ("linux libertine", "Source Han Serif SC", "Source Han Serif"),
size: 10pt,
)
#show math.equation: set text(11pt)
#show math.equation: it => [
#math.display(it)
]
#let dcases(..args) = {
let dargs = args.pos().map(it => math.display(it))
math.cases(..dargs)
}
#show image: it => [
#set align(center)
#it
]
#align(center)[
= 习题课 7 讲义
2024 Spring 数学分析 B2
PB21000030 马天开
]
== 小测答案
=== 1
计算 $I = integral.double_D x(1+y e^(x^4 y^6)) dif x dif y$, 其中 $D: y=sin x,x=-pi/2, y=1$
$
I&=integral_(-pi / 2)^(pi / 2) dif x integral_(sin x)^1 x (1+y e^(x^4 y^6)) dif y\
&=integral_(-1)^1 dif y integral_(-pi / 2)^(arcsin y) x(1+y dot e^(x^4 y^6)) dif x\
$
显然这两个方向上都无法得到初等函数解, 做如下处理
先对 $f_1(x,y) = x$ 在 $D$ 上积分:
$
I_1&=integral_(-pi / 2)^(pi / 2) dif x integral_(sin x)^1 x dif y\
&=integral_(-pi / 2)^(pi / 2) x (1-sin(x)) dif x\
&=integral_(-pi / 2)^(pi / 2) x dif x - integral_(-pi / 2)^(pi / 2) x sin(x) dif x\
&=0 - 2 integral_(-pi / 2)^(pi / 2) x sin(x) dif x\
&=-2
$
对于 $f_2(x,y)=x y dot e^(x^4 y^6)$ 有比较强的对称性, 但是处理起来容易出错, 我们这里处理如下:
$
I_2 &= integral_(-pi / 2)^(pi / 2) dif x integral_(sin(x))^1 f_2(x,y) dif y\
&= integral_(pi / 2)^(-pi / 2) dif (-x) integral_(sin(-x))^1 f_2(-x,y) dif y\
&= integral_(-pi / 2)^(pi / 2) dif x integral_1^(sin(x)) f_2(x,y) dif y\
&= 1 / 2 integral_(-pi / 2)^(pi / 2) dif x integral_(sin(x))^(-sin(x)) f_2(x,y) dif y\
&= 1 / 2 integral_(-pi / 2)^(pi / 2) dif x integral_(-sin(x))^(sin(x)) f_2(x,-y) dif (-y)\
&= 1 / 2 integral_(-pi / 2)^(pi / 2) dif x integral_(sin(x))^(-sin(x)) - f_2(x,y) dif (y)\
&= 0 \
$
=== 2
$
F(t) = integral_1^t dif y integral_y^t e^(-x^2) dif x
$
计算 $(dif F)/(dif t)$
在 B1 中我们讲过含参变上限求导的方法, 例如:
$
F(x,t) = integral_(x_0)^t f(x,t) dif x\
(dif F) / (dif t) = f(t,t) + integral_(x_0)^t (diff f) / (diff t) dif x
$
对于本题, 只需要应用两遍:
$
(dif F) / (dif t) &= dif / (dif t) integral_1^t dif y integral_y^t e^(-x^2) dif x\
&= [integral_y^t e^(-x^2) dif x]_(y=t) + integral_1^t (diff / (diff t) integral_y^t e^(-x^2) dif x) dif y\
&= 0 + integral_1^t e^(-t^2) dif y\
&= e^(-t^2) (t-1)
$
=== 3
求 $ (x^2+y^2)^2 + z^4 = y $ 内部的体积
考虑球坐标变换:
$
dcases(
x = r sin theta cos phi,
y = r sin theta sin phi,
z = r cos theta,
) quad => quad dif x dif y dif z = r^2 sin theta dif r dif theta dif phi
$
$
&r^4 sin^4 theta (cos^2 phi + sin^phi)^2 + r^4 cos^4 theta = r sin theta sin phi\
=>&r^3 = (sin theta sin phi)/(sin^4 theta + cos^4 theta) > 0
$
注意到 $0<theta<pi => sin(theta) > 0$, 只需要 $sin phi > 0 => phi in (0,pi)$
所以转变为求下面的三重积分:
$
integral.triple_V dif x dif y dif z &= integral.triple_(V^') r^2 sin theta dif r dif theta dif phi\
&= integral_0^pi dif phi integral_0^pi dif theta integral_0^R r^2 sin theta dif r\
&= integral_0^pi dif phi integral_0^pi R^3 / 3 dif theta\
&= 1/3 integral_0^pi dif phi integral_0^pi (sin^2 theta sin phi)/(sin^4 theta + cos^4 theta) dif theta\
&= 1/3 (integral_0^pi sin phi dif phi)(integral_0^pi (sin^2 theta)/(sin^4 theta + cos^4 theta) dif theta)\
$
前面 $integral_0^pi sin phi dif phi = 2$ 容易得到, 后面的处理也不算容易, 我们展开讨论:
$
integral_0^pi &= integral_0^(pi/2) + integral_(pi/2)^pi\
&= integral_0^(pi/2) (sin^2 theta)/(sin^4 theta + cos^4 theta) dif theta + integral_(pi/2)^pi (sin^2 theta)/(sin^4 theta + cos^4 theta) dif theta\
&= integral_0^(pi/2) (sin^2 theta)/(sin^4 theta + cos^4 theta) dif theta + integral_0^(pi/2) (cos^2 theta)/(cos^4 theta + sin^4 theta) dif theta\
&= integral_0^(pi/2) 1/(sin^4 theta + cos^4 theta) dif theta
$
接下来是三角换元, 所有都是平方项, 考虑 $tan$ 相关的方向:
$
& quad integral 1/(sin^4 theta + cos^4 theta) dif theta\
&=integral (sec^4 theta)/(tan^4 theta + 1) dif theta\
&=integral (sec^2 theta (tan^2 theta + 1))/(tan^4 theta + 1) dif theta\
&= integral (t^2 + 1)/(t^4 + 1) dif t\
&= integral (1/t^2 + 1)/(1/t^2 + t^2) dif t\
&= integral (dif (t - 1/t))/((t - 1/t)^2 + 2)\
&= 1/sqrt(2) arctan((t-1/t)/sqrt(2))\
$
当 $theta = 0 -> pi/2$ 时, $t= 0->oo$, $t-1/t = -oo -> oo$, 反常积分存在, 代入即可: $I = 2/3 dot pi/sqrt(2) = sqrt(2)/3 pi$
=== 4
$
D = {x^2 + y^2 <=a }\
f: D->RR^+, quad f in C^1(D), quad f|_(diff D) = 0\
$
证明:
$
abs(integral.double_D f(x,y) dif x dif y) <= 1/3 pi a^3 max_((x,y) in D) sqrt(((diff f)/(diff x))^2 + ((diff f)/(diff y))^2 )
$
我们把问题转化为极坐标系下面的问题:
$
& (diff f)/(diff r) = (diff f)/(diff x) (diff x)/(diff r) + (diff f)/(diff y) (diff y)/(diff r) = cos theta (diff f)/(diff x) + sin theta (diff f)/(diff y)\
=> & abs((diff f)/(diff r)) <= sqrt(((diff f)/(diff x))^2 + ((diff f)/(diff y))^2)\
& quad quad space.thin <= max_((x,y) in D) sqrt(((diff f)/(diff x))^2 + ((diff f)/(diff y))^2) = M\
$
对于每个 $f(r,theta)$, 考虑到边界上函数值已知, 我们可以通过单变量的中值定理给出它的一个估计:
$
&k_theta (r) = f(r, theta) \
&k_theta (a) - k_theta (r) = (dif k_theta)/(dif r)|_(r = xi) (a-r) quad xi in (a,r) \
=>&k_theta(r) = - (dif k_theta)/(dif r)|_(r = xi) (a-r)\
& quad quad space.thin <= M (a-r)\
$
因此
$
abs(integral.double_D f(x,y) dif x dif y) &<= integral.double_D abs(f(x,y)) dif x dif y\
&<= M integral.double_D (a-r) dot r dif r dif theta\
&= M integral_0^(2pi) dif theta integral_0^a (a-r) r dif r\
&= M dot 2pi dot (1/2 a^3 - 1/3 a^3)\
& = 1/3 pi a^3 quad qed
$
#pagebreak()
== 作业答案
#text(weight: "bold")[
- 4.1 P125 7(3)(4)(5)
- 4.3 P125 9 10(3)(4) 11(1)(3) 13 18 19 20 21
- 4.8 P156 2(1)(2)(3)(6)(7)(8)
- 4.10 P156 1(2)(3)(5)(6) 3 5 6 7
- 4.12 P166 1(1)(4)(5) 2(2)(5)(8) 3(2)(3) 4 6 7
]
=== 7(3)
$
&space.quad f(x,y) = e^(2x) (x+2y+y^2) \
&dcases(
(diff f)/(diff x) &= e^(2x)(2x+4y+2y^2+1),
(diff f)/(diff y) &= e^(2x)(2+2y),
(diff^2 f)/(diff x^2) &= e^(2x)(4x+8y+4y^2+4),
(diff^2 f)/(diff y^2) &= e^(2x) dot 2,
(diff^2 f)/(diff x diff y) &= e^(2x)(4+4y),
)\
&dcases(
(diff f)/(diff x) &= 0 ,
(diff f)/(diff y) &= 0 ,
)space.quad => space.quad
dcases(
x = 1/2 ,
y = -1 ,
)\
&dcases(
A = 2e^1 ,
B = 0 ,
C = 2e^1 ,
)
space.quad => space.quad
dcases(
Delta = A C - B^2 = 4e^2 > 0,
A > 0
)
$
正定, 极小值 $f(1/2, -1) = -e/2$
#image("imgs/1.png", width: 50%)
#pagebreak()
=== 7(4)
$
(x^2+y^2)^2 = a^2(x^2-y^2) \
$
$
&=> [4x(x^2+y^2)-2a^2x]dif x +[4y(x^2+y^2)+2a^2y]dif y = 0 \
&=> (dif y) / (dif x) = -(4x(x^2+y^2)-2a^2x) / (4y(x^2+y^2)+2a^2y) \
$
$
(dif y) / (dif x) = 0 space.quad => space.quad x = 0 "or" x^2+y^2=1 / 2a^2 \
$
考虑 $x=0 => (x,y) = (0,0)$ 此处不可微, 舍去
$
dcases(
x^2+y^2=1/2a^2 ,
x^2-y^2=1/4a^2 ,
) space.quad => space.quad
y^2 = 1 / 8
$
接下来可以用更一般的做法判断是否是极大值/极小值, 我们这里推荐一种更加初等但是高效的做法:
考虑关于 $x^2$ 的二次方程:
$
x^4+(2y^2-a^2)x^2+(y^4+a^2y^2) = 0
$
其中 $Delta=(4y^4-4a^2y^2+a^4)-4(a^2y^2+y^4)=-8a^2y^2+a^4>=0$
因此 $y^2<=1/8a^2$, 两个$ y_1=-sqrt(2)/4a, space.quad y_2=sqrt(2)/4a $分别为极小值、极大值(考虑到在其附近光滑.)
#image("imgs/2.png", width: 50%)
这个例子上学期将隐函数、参数方程求导的时候提到过: 有些参数方程的形式能给出 $(dif y)/(dif x)$ 的值, 但我们认为隐函数在 $(0,0)$ 附近不存在.
#pagebreak()
=== 7(5)
$
&x^2+y^2+z^2-2x+2y-4z-10=0 \
=> & (2x-2)dif x +(2y+2)dif y+(2z-4)dif z=0 \
=> & (diff z) / (diff x) = -(x-1) / (z-2) space.quad (diff z) / (diff y) = -(y+1) / (z-2) \
=> & (diff^2 z) / (diff x^2) = -((x-1)^2+(z-2)^2) / (z-2)^3 space.quad (diff^2 z) / (diff y^2) = -((z-2)^2+(y+1)^2) / (
z-2
)^3 space.quad (diff^2 z) / (diff x diff y) = 0 \
$
$
((diff z) / (diff x), (diff z) / (diff y)) = (0, 0) => (x, y) = (1, -1) \
$
此时对应 $z_1 = 6, z_2=-2$, 我们分别在两个点的局部判断这是极大值/极小值, 即 $(1,-1,6)$ 和 $(1,-1,-2)$
- $z_1 = 6$ 时 $Delta=A C-B^2>0, A<0$, 正定, 极大值
- $z_2 = -2$ 时 $Delta=A C-B^2>0, A>0$, 负定, 极小值
#image("imgs/3.png", width: 50%)
#pagebreak()
=== 9
#image("imgs/4.png", width: 50%)
#pagebreak()
=== 10(3)
$
u(x,y,z)&=sin x sin y sin z\
U(x,y,z,phi)&=sin x sin y sin z -phi dot.c(x+y+z-pi/2)\
&dcases(
(diff U)/(diff x) &= cos x sin y sin z -phi=0 ,
(diff U)/(diff y) &= sin x cos y sin z -phi=0 ,
(diff U)/(diff z) &= sin x sin y cos z -phi=0 ,
&x+y+z=pi/2 ,
)
$
可以解出
$
P_0=(pi / 6,pi / 6,pi / 6) quad
P_1=(pi / 2,0,0)\
P_2=(0,pi / 2,0) quad
P_3=(0,0,pi / 2)\
$
分别代入 $u$ 可以得到 $u(P_0)=1/8, u(P_1)=0, u(P_2)=0, u(P_3)=0$
极大值极小值的判断不能直接从拉格朗日乘子法中得到, 应该通过如下方法判断:
- *降为二元函数*
$
u(x,y)=u(x,y,z)=u(x,y,pi / 2-x-y)=sin x sin y cos(x+y)\
$
接下来继续处理 $Delta=(diff^2 u)/(diff x^2) dot.c (diff^2 u)/(diff y^2)-((diff^2 u)/(diff x diff y))^2$, 按照一般的二元函数的处理 (#strike[也许可以从头开始就按照这样的做法]), 最终可以获得结果.
#image("./imgs/6.png", width: 50%)
#box[
可以做如下处理:
$
u&=sin x sin y sin z \
dif u&=cos x sin y sin z dif x + sin x cos y sin z dif y + sin x sin y cos z dif z\
$
]
#align(center)[
#rect[
$
&x+y+z=pi / 2 space.quad=>space.quad dif x + dif y + dif z = 0\
$
]
]
$
=> & dif u = (cos x sin y sin z - sin x sin y cos z)dif x + (sin x cos y sin z - sin x sin y cos z)dif y\
=> & (diff u) / (diff x)=cos x sin y sin z - sin x sin y cos z=0\
=> & (diff u) / (diff y)=sin x cos y sin z - sin x sin y cos z=0\
=> & (diff^2 u) / (diff x^2)= -2sin x sin y sin z - 2cos x sin y cos z =-1\
=> & (diff^2 u) / (diff y^2) = -2sin x sin y sin z - 2sin x cos y cos z =-1\
=> & (diff^2 u) / (diff x diff y) = cos x cos y sin z - sin x cos y cos z - cos x sin y cos z - sin x sin y sin z =-1 / 2\
$
所以有
$
Delta = A C - B^2 = 3 / 4 >0 space.quad A=-1<0
$
正定, 最大值 $ u(pi/6,pi/6,pi/6)=1/8 $
下图是 $u(x,y,z)=sin x sin y sin z $ 的热力图,通过颜色来反应无法画出的另一维度的信息.
#image("imgs/5.png", width: 50%)
- *紧集最值定理*:
- 考虑 $f: D -> RR, D subset RR^d$ $D$ 在 $RR^d$ 上 compact, $f$ 在 $D$ 上连续, 则 $f$ 在 $D$ 上有最大值和最小值.
- 讨论在 $diff D$ 上 $f$ 的取值, 在这个问题中 $f|_(diff D) eq.triple 0$
- 在 $D^o$ 中, 最值必定在驻点中取得 $=> f(D^o)= [0,1\/8]$
- 那么 $f(D) = [0, 1\/8] quad forall x in D$, 在 $P_0$ 的一个局部$U(P_0) subset D$ 内, $forall x in P_0, f(x) <= 1\/8 = f(P_0)$, 因此是极大值
#pagebreak()
=== 10(4)
$
&u=x y z space.quad x+y+z=0 space.quad x^2+y^2+z^2=1\
$
按照上文的处理思路,
$
&dif u = y z dif x + x z dif y + x y dif z\
$
#align(center)[
#rect[
$
dif x + dif y + dif z = 0\
x dif x + y dif y + z dif z = 0\
$
]
]
在后两个方程中, 解出 $dif y, dif z$ 关于 $dif x$的表达式为:
$
dif y = (z-x) / (y-z) dif x quad dif z = (x-y) / (y-z) dif x
$
接下来可以类似处理得到 $(dif u)/(dif x) , (dif^2 u)/(dif x^2)$, 按照一元函数的极值点处理即可.
#rect(width: 100%, inset: 1em)[
这样的思路主要源自这样的几何直观: 一个过原点的平面截一个单位球总会得到一个闭曲线:
#image("imgs/9.png", width: 50%)
]
#pagebreak()
按照一般的 Lagrange 乘子法:
$
&U(x,y,z, lambda, mu) = x y z - lambda(x+y+z) - mu(x^2+y^2+z^2-1) \
&dcases(
(diff U)/(diff x) &= y z - lambda - 2mu x = 0 ,
(diff U)/(diff y) &= x z - lambda - 2mu y = 0 ,
(diff U)/(diff z) &= x y - lambda - 2mu z = 0 ,
&x+y+z = 0 ,
&x^2+y^2+z^2 = 1 ,
)\
$
对上面式子的处理较为依赖对称性, 我们提供一种比较简便、标准的做法:
首先考虑 $(diff U)/(diff x),(diff U)/(diff y),(diff U)/(diff z)$ 中 $mu x,mu y,mu z$的对称性, 我们将这三项对应加起来:
$
&quad (diff U) / (diff x) + (diff U) / (diff y) + (diff U) / (diff z)\
&= x z + y z + x y - 3 lambda - 2 mu (x+y+z)\
&= x z + y z + x y - 3 lambda \
&= 0
$
前面一项是已知的, 得益于这样的关系:
$
(x+y+z)^2&=x^2+y^2+z^2+2(x y+y z+z x)\
&=1+2(x y+y z+z x)=0 \
=> & x y+y z+z x = -1 / 2
$
因此得到 $lambda = - 1/6$, 接下来只需要关心前两项 $(diff U)/(diff x), (diff U)/(diff y)$:
$
&dcases(
y z + 1/6 - 2 mu x = 0 ,
x z + 1/6 - 2 mu y = 0 ,
) => dcases(
y^2 z + 1/6 y - 2 mu x y = 0 ,
x^2 z + 1/6 x - 2 mu y x = 0 ,
)\
&=> [z(x+y) + 1 / 6](x-y) = 0 ,
&=> [(x+y)^2 - 1 / 6](x-y) = 0 ,
$
接下来我们分别讨论 $x=y$ 和 $(x+y)^2=1/6$. 其实他们反映的是一种情况的对称.
#box(width: 100%)[
- $x=y$
$
x=y => z=-2x\
x^2 + y^2 + z^2 = 6 x^2 = 1 => x = plus.minus sqrt(6) / 6 \
P_1(sqrt(6) / 6,sqrt(6) / 6, -sqrt(6) / 3) quad P_2(-sqrt(6) / 6, -sqrt(6) / 6, sqrt(6) / 3)
$
]
#box(width: 100%)[
- $(x+y)^2=1 / 6$
$
(x+y)^2=1 / 6 => z^2 = 1 / 6 \
=> x^2 + y^2 = 5 / 6 \
(x-y)^2 = 9 / 6 \
$
$
dcases(
(x-y) = plus.minus 3/6sqrt(6) ,
(x+y) = plus.minus 1/6sqrt(6) ,
)\
$
$
&P_3(sqrt(6) / 3, -sqrt(6) / 6, -sqrt(6) / 6) quad &P_4(-sqrt(6) / 3, sqrt(6) / 6, sqrt(6) / 6) \
&P_5(sqrt(6) / 6, -sqrt(6) / 3, sqrt(6) / 6) quad &P_6(-sqrt(6) / 6, sqrt(6) / 3, -sqrt(6) / 6) \
$
]
因此 $ u_max = sqrt(6)/18 quad u_min = -sqrt(6)/18 $
考虑到讨论的取值范围是光滑的闭曲线, 光滑函数在此上的最大(小)值点也显然是局部的极大(小)值点.
#pagebreak()
=== 11(1)
在做这道题之前也许就应该想到 $z=x^2-y^2$ 的曲面图像:
#image("imgs/7.png", width: 50%)
即便没有这样的几何直观, 处理起来也是固定的模式, 先讨论内部的极值点、再讨论边界上的条件极值.
$
(diff z) / (diff x) = 2x quad (diff z) / (diff y) = -2y \
(diff^2 z) / (diff x^2) = 2 quad (diff^2 z) / (diff y^2) = -2 quad (diff^2 z) / (diff x diff y) = 0
$
Hessian 矩阵总是负定的, 函数在${(x,y)mid("|") x^2+y^2 <4}$内部不存在极值点. (事实上也说明在任何区域内部都不存在极值点)
#rect(fill: red.lighten(70%), width: 100%, inset: 1em)[
实际上我们有更一般的结论:
- *弱极值原理*: 考虑调和函数 $u$($Delta u=0$), 在区域 $overline(Omega)$ 上连续, 则函数的最值总能在边界上取得:
$
max_(overline(Omega)) u = max_(partial Omega) u
$
- *极值原理*: 非常数调和函数的最值总在边界上取得.
$
max_(Omega) u = max_(partial Omega) u \
max_(Omega^o) u < max_(partial Omega) u
$
]
回到本题, 我们继续讨论边界上的极值点, 问题转化为一个一般的拉格朗日乘子法问题:
$
L(x,y, mu) = x^2-y^2 + mu(x^2+y^2-4) \
dcases(
(diff L)/(diff x) = 2x(1+mu) = 0 ,
(diff L)/(diff y) = -2y(1-mu) = 0 ,
x^2+y^2 = 4 \
)\
P_1(0,2) quad P_2(0,-2) quad P_3(2,0) quad P_4(-2,0)
$
容易得到 $z_min = -4, z_max = 4$
#pagebreak()
=== 11(3)
$
&z=sin x +sin y -sin(x+y) quad D={(x,y)mid("|")x>=0,y>=0,x+y<=2pi} \
$
区域内的情况:
$
&dcases(
(diff z)/(diff x) &= cos x -cos(x+y) = 0 ,
(diff z)/(diff y) &= cos y -cos(x+y) = 0 ,
) \
&P_1(0,0) quad P_2(2pi,0) quad P_3(0,2pi) quad P_4(2 / 3 pi, 2 / 3 pi)
$
$ => z_min = 0, z_max=3 / 2 sqrt(3) quad forall x in D^o $
边界上的情况,我们分成三段:
$
&l_1: {0}times[0,2pi] \
&l_2: [0,2pi]times{0} \
&l_3: {(x,y)mid("|")x+y=2pi,x>=0,y>=0} \
$
其中 $l_1, l_2$ 是对称的,我们只考虑 $l_1$:
$
&z = sin 0 + sin y - sin(0+y) eq.triple 0 quad &(x,y) in l_1 \
&z = sin x + sin(2pi-x) - sin(2pi) eq.triple 0 quad &(x,y) in l_3 \
$
#image("imgs/11.png", width: 50%)
#pagebreak()
=== 13
$
dcases(
z=x^2+2y^2 ,
z=6-2x^2-y^2 ,
) quad => quad x^2 + y^2 = 2
$
#image("imgs/10.png", width: 50%)
问题转为考虑 $z=x^2+2y^2$ 在 $x^2+y^2=2$ 上的最值问题, 应用拉格朗日乘子法:
$
L(x,y, mu) = x^2+2y^2 + mu(x^2+y^2-2) \
dcases(
(diff L)/(diff x) = 2x(1+mu) = 0 ,
(diff L)/(diff y) = 4y(1+mu) = 0 ,
x^2+y^2 = 2 ,
)\
P_1(0,sqrt(2)) quad P_2(0,-sqrt(2)) quad P_3(sqrt(2),0) quad P_4(-sqrt(2),0)
$
因此 $z_min = 2, z_max = 4$
#pagebreak()
=== 14
#rect(width: 100%, inset: 1em)[
#columns(2)[
$
f(x,y)=3x^2y-x^4-2y^2\
dcases(
(diff f)/(diff x)|_((0,0)) = 6x y-4x^3 = 0 ,
(diff f)/(diff y)|_((0,0)) = 3x^2-4y = 0 ,
(diff^2 f)/(diff x^2)|_((0,0)) = 6y-12x^2 = 0 ,
(diff^2 f)/(diff y^2)|_((0,0)) = -4 ,
(diff^2 f)/(diff x diff y)|_((0,0)) = 6x = 0 ,
)\
$
#colbreak()
$Delta = A C-B^2=0$ 欠定, 我们继续往下算:
$
dcases(
(diff^3 f)/(diff x^3)|_((0,0)) = -24x = 0 ,
(diff^3 f)/(diff x^2 diff y)|_((0,0)) = 6 ,
(diff^3 f)/(diff x diff y^2)|_((0,0)) = 0 ,
(diff^3 f)/(diff y^3)|_((0,0)) = 0 = 0 ,
)
$
]
]
因此 $f(x,y)$的三阶 Taylor 展开为:
$
f(x,y) = -2y^2+3x^2y + o(rho^3)
$
#align(center)[
#image("imgs/12.png", width: 70%)
(蓝色是级数逼近)
]
显然 $f(0,0)=0$ 不是极值点.
我们考虑任意过 $(0,0)$ 的直线 $y=k x$, 有:
$
f(x) = 3k x^3 - x^4 - 2k^2 x^2\
dcases(
(dif f)/(dif x)|_((0,0)) = 9k x^2 - 4x^3 - 4k^2 x = 0 ,
(dif^2 f)/(dif x^2)|_((0,0)) = 18k x - 12x^2 - 4k^2 = - 4k^2<0 ,
)
$
因此在每条过原点的直线上 $(0,0)$ 都是极大值点.
#pagebreak()
=== 18
$
f(x,y) = (x - x_1)^2 + (y - y_1)^2 + dots.c + (x - x_n)^2 + (y - y_n)^2\
dcases(
(diff f)/(diff x) = 2(x - x_1) + dots.c + 2(x - x_n) = 0 ,
(diff f)/(diff y) = 2(y - y_1) + dots.c + 2(y - y_n) = 0 ,
(diff^2 f)/(diff x^2) = 2n ,
(diff^2 f)/(diff y^2) = 2n ,
(diff^2 f)/(diff x diff y) = 0 ,
)\
$
因此解出
$
=> x = (x_1 + dots.c + x_n) / n quad y = (y_1 + dots.c + y_n) / n\
$
$
Delta = A C - B^2 = 4n^2 - 0 = 4n^2 > 0 quad A = 2n > 0
$
因此是极小值点.
#pagebreak()
=== 19
$
f(x,y, mu) = x y z - mu(x^2/a^2 + y^2/b^2 + z^2/c^2 - 1)\
dcases(
(diff f)/(diff x) = y z - 2 mu x / a^2 = 0,
(diff f)/(diff y) = x z - 2 mu y / b^2 = 0,
(diff f)/(diff z) = x y - 2 mu z / c^2 = 0,
x^2/a^2 + y^2/b^2 + z^2/c^2 = 1,
)\
(x,y,z) = cal(k) (a,b,c) quad=>quad cal(k)=sqrt(3) / 3
$
此时 $V = 8x y z = 8/9 sqrt(3) a b c$, 为最大值.
#image("imgs/13.png", width: 50%)
#pagebreak()
=== 20
$
f(x,y,z,mu)=abs(x+y+2z-9) / (sqrt(1^2+1^2+2^2)) - mu(x^2/4+y^2+z^2-1)\
dcases(
(diff f)/(diff x) = -1/(sqrt(6)) - mu x / 2 = 0 ,
(diff f)/(diff y) = -1/(sqrt(6)) - 2mu y = 0 ,
(diff f)/(diff z) = -2/(sqrt(6)) - 2mu z = 0 ,
x^2/4 + y^2 + z^2 = 1 ,
)\
P_1(4 / 3,1 / 3,2 / 3) quad P_2(-4 / 3,-1 / 3,-2 / 3)
$
#image("imgs/14.png", width: 60%)
#pagebreak()
=== 21
$
F(x,y,z)=sqrt(x)-sqrt(y)-sqrt(z)-sqrt(a) eq.triple 0\
dif F = 1 / (2sqrt(x))dif x - 1 / (2sqrt(y))dif y - 1 / (2sqrt(z))dif z = 0\
1 / (2sqrt(x_0))(x-x_0) - 1 / (2sqrt(y_0))(y-y_0) - 1 / (2sqrt(z_0))(z-z_0) = 0\
x / (2sqrt(x_0)) - y / (2 sqrt(y_0)) - z / (2 sqrt(z_0)) = sqrt(x_0) / 2 - sqrt(y_0) / 2 - sqrt(z_0) / 2\
x / (sqrt(x_0)) - y / (sqrt(y_0)) - z / (sqrt(z_0)) = sqrt(x_0) - sqrt(y_0) - sqrt(z_0)\
$
所有截距之和:
$
l_1+l_2+l_3=(sqrt(x_0)-sqrt(y_0)-sqrt(z_0))^2 = a
$
四面体体积:
$
1 / 6 l_1 dot l_2 dot l_3 = 1 / 6 a^(3 / 2) dot sqrt(x_0) dot sqrt(y_0) dot sqrt(z_0)
$
$
f(
x_0, y_0, z_0, mu
) = a^(3 / 2) dot sqrt(x_0) dot sqrt(y_0) dot sqrt(z_0) - mu(sqrt(x_0) - sqrt(y_0) - sqrt(z_0) - sqrt(a)) \
f(l,m,n,mu) = a^(3 / 2) dot l m n - mu(l - m - n - sqrt(a))\
dcases(
(diff f)/(diff l) = a^(3/2) dot m n - mu = 0 ,
(diff f)/(diff m) = a^(3/2) dot l n - mu = 0 ,
(diff f)/(diff n) = a^(3/2) dot l m - mu = 0 ,
l m n = a ,
)\
=> quad l = m = n = 1 / 3 sqrt(a)
$
所以最大四面体面积为 $a^3/162$, 截面: $x-y-z+1/9 a=0$
#pagebreak()
=== P156 1
- (2)
$
integral_0^2 dif x integral_(2x)^(6-x)f(x,y)dif y = integral_0^4 dif y integral_0^(y / 2) f(
x,y
)dif x + integral_4^6 dif y integral_0^(6-y) f(x,y)dif x\
$
- (3)
$
integral_0^a dif y integral_(a-sqrt(a^2-y^2))^(a+sqrt(a^2-y^2))f(
x,y
)dif x = integral_0^(2a) dif x integral_(0)^(sqrt(a^2-(x-a)^2))f(x,y)dif y\
$
- (5)
$
integral_0^1 dif x integral_0^x f(x,y) dif y+integral_1^2 dif x+integral_0^(2-x) f(
x,y
) dif y = integral_0^2 dif y integral_y^(2-y) f(x,y) dif x\
$
- (6)
$
integral_0^1dif y integral_(1 / 2)^1f(x,y)dif x+integral_1^2dif y integral_(1 / 2)^(1 / y)f(
x,y
)dif x = integral_(1 / 2)^1dif x integral_(0)^(1 / x)f(x,y)dif y\
$
#align(center)[
#box(width: 95%)[
#table(
columns: (auto, auto, auto),
align: bottom,
stroke: none,
[
#image("imgs/15.png")
(2)
],
[
#image("imgs/16.png")
(3)
],
[
#image("imgs/17.png")
(5)
#image("imgs/18.png")
(6)
],
)
]
]
#pagebreak()
=== 2
- (1)
$
&quad integral.double_D y / (1+x^2+y^2)^(3 / 2) dif x dif y quad D=[0,1]times[0,1]\
&=integral_0^1 dif x integral_0^1 y / (1+x^2+y^2)^(3 / 2) dif y\
&=integral_0^1 dif x integral_0^1 (1 / 2 dif y^2) / (1+x^2+y^2)^(3 / 2)\
&=integral_0^1 [-(1+x^2+y^2)^(-1 / 2)]_0^1 dif x\
&=integral_0^1 -1 / sqrt(2+x^2) + 1 / sqrt(1+x^2) dif x\
&=[-ln(x+sqrt(2+x^2)) + ln(x+sqrt(1+x^2))]_0^1\
&=-ln(1+sqrt(3)) + ln(1+sqrt(2)) + 1 / 2ln 2\
&=quad ln(-1+sqrt(3))+ln(1+sqrt(2))-1 / 2ln 2
$
- (2)
$
&quad integral.double_D sin(x+y) dif x dif y quad D=[0,pi]times[0,pi]\
&=integral_0^pi dif x integral_0^pi sin(x+y) dif y\
&=integral_0^pi (-cos(pi+x)+cos x) dif x\
&=-sin 2pi + sin pi + sin pi - sin 0\
&=0
$
- (3)
$
&quad integral.double_D cos(x+y) dif x dif y\
&=integral_0^pi dif x integral_x^pi cos(x+y) dif y\
&=-integral_0^pi sin(2x)+sin x dif x\
&=-2
$
#align(center)[
#rect[
$
integral_0^pi sin(2x) dif x = 1 / 2 integral_0^(2pi) sin x dif x = 0
$
]
]
#pagebreak()
- (6)
$
&quad integral.double_D (sin y) / y dif x dif y\
&= integral_0^1 dif y integral_(y^2)^y (sin y) / y dif x\
&= integral_0^1 (1-y)sin y dif y\
&= 1-sin 1
$
- (7)
$
&quad integral.double_D x^2 / y^2 dif x dif y\
&= integral_1^2dif x integral_(1 / x)^x x^2 / y^2 dif y\
&= integral_1^2 [-x^2 / y]_(y=1 / x)^(y=x) dif x\
&= integral_1^2 (-x+x^3) dif x\
&= -2^2 / 2 + 2^4 / 4 + 1 / 2 - 1 / 4\
&= 9 / 4
$
- (8)
$
&quad integral.double_D abs(cos(x+y)) dif x dif y\
&= integral_0^(pi / 4) dif x integral_0^x dif y + integral_(pi / 4)^(pi / 2) dif x integral_0^(pi / 2-x) dif y - integral_(pi / 4)^(pi / 2) dif x integral_(pi / 2 - x)^(x) dif y \
&= pi / 2 - 1
$
#pagebreak()
=== 3
- (1)
$
&quad integral.double_D (x^2+y^2) dif x dif y quad D = [-1,1]times [-1,1]\
&= 4 integral.double_(D^') (x^2+y^2) dif x dif y quad D^' = [0,1]times [0,1]\
&= 8 integral.double_(D^') x^2 dif x dif y\
&= 8 integral_0^1 x^2 dif x\
&= 8 / 3
$
- (2)
#image("imgs/8.png", width: 50%)
$
integral.double_D sin x sin y dif x dif y &= integral sin x dot dif x integral_(y_2(x))^(y_1(x)) sin y dif y\
(forall x, quad y_1(x) + y_2(x) = 0) &=> integral 0 dot sin x dif x\
&=0
$
#pagebreak()
=== 5
$
integral_0^a dif x integral_0^x f(x)f(y) dif y &= integral_0^a dif y integral_0^x f(y)f(x) dif x \
=> integral_0^a dif x integral_0^x f(x)f(y) dif y &= 1 / 2 integral.double_D f(x)f(y) dif x dif y quad &D = [0,a]times[
0,a
]\
&= 1 / 2 (integral_0^a f(x) dif x)^2 quad qed \
integral_0^a dif x integral_0^x f(y) dif y &= integral_0^a dif y integral_y^a f(y) dif x\
&=integral_0^a (a-y) f(y) dif y quad qed
$
// #pagebreak()
=== 6
$
integral.double_D (diff^2 f) / (diff x diff y) dif x dif y & = integral_a^b dif x integral_c^d (diff^2 f) / (diff x diff y) dif y\
&= integral_a^b ((diff f) / (diff x)(x,d) - (diff f) / (diff x)(x,c)) dif x\
&= f(b,d) - f(a,d) - f(b,c) + f(a,c) quad qed
$
// #pagebreak()
=== 7
$
1 / (2pi r_0) integral.double_(r<r_0) f(
r,theta
) r dif r dif theta = 1 / (2pi r_0) integral_0^(2pi) dif theta integral_0^r_0 f(r,theta) r dif r\
\
forall epsilon>0, exists r_0 = r_0(theta) quad s.t. quad r<r_0 => |f(r,theta)-f(0,0)|<epsilon\
\
=> 1 / (2pi r_0) integral_0^(2pi) dif theta integral_0^r_0 f(
r,theta
) r dif r < 1 / (2pi r_0) integral_0^(2pi) dif theta integral_0^r_0 (f(0, 0) + epsilon) r dif r = f(0,0) + epsilon\
=> 1 / (2pi r_0) integral_0^(2pi) dif theta integral_0^r_0 f(
r,theta
) r dif r > 1 / (2pi r_0) integral_0^(2pi) dif theta integral_0^r_0 (f(0, 0) - epsilon) r dif r = f(0,0) - epsilon\
\
\
=> (
1 / (2pi r_0) integral.double_(r<r_0) f(r,theta) r dif r dif theta - f(0,0)
) < epsilon quad forall epsilon, exists r, forall r_0<r quad qed
$
#pagebreak()
=== P166 1
- (1)
$
&quad integral_0^R dif x integral_0^(sqrt(R^2-x^2)) ln(1+x^2+y^2) dif y\
&= integral_0^(pi / 2) dif theta integral_0^R ln(1+r^2) r dif r\
&= pi / 2 integral_0^R ln(1+r^2) r dif r\
&= pi / 4 integral_0^R^2 ln(1+t) dif t\
&= pi / 4 dot [(t+1)ln(1+t)-t]_0^R^2\
&= pi / 4 dot [(R^2+1)ln(1+R^2)-R^2]
$
- (4)
$
&quad integral_0^(1 / (sqrt(2))) dif x integral_x^(sqrt(1-x^2)) x y(x+y) dif y \
&=integral_(pi / 4)^(pi / 2) dif theta integral_0^1 r cos theta dot r sin theta dot (r cos theta + r sin theta) r dif r\
&=1 / 5 integral_(pi / 4)^(pi / 2) (cos^2 theta sin theta + cos theta sin^2 theta) dif theta\
&=1 / 15
$
- (5)
$
&quad integral_0^(R/(sqrt(1+R^2))) dif x integral_0^(R x)(1+(y^2)/(x^2)) dif y + integral_(R/sqrt(1+R^2))^(R) dif x integral_0^(sqrt(R^2-x^2))(1+(y^2)/(x^2)) dif y\
&=integral_0^(arctan R) dif theta integral_0^R (r^2)/(r^2 cos^2 theta) r dif r\
&=integral_0^(arctan R) dif theta integral_0^R sec^2 theta dot r dif r\
// &=integral_0^(arctan R) dif theta sec^2 theta r^2/2 |_0^R\
&=R^2/2 integral_0^(arctan R) sec^2 theta dif theta\
&=R^2/2 [tan theta]_0^(arctan R)\
// &=1/2 R^2 tan(arctan R)\
&=1/2 R^3
$
#pagebreak()
=== 2
- (2)
$
&quad integral.double_D sqrt(x^2/a^2+y^2/b^2) dif x dif y\
(x=a dot r sin theta, y=b dot r cos theta) & = integral.double_D r dot a b dot r dif r dif theta\
&= a b integral_0^(arctan(a\/b)) dif theta integral_0^2 r^2 dif r\
&= 8 / 3 a b dot arctan(a/b)
$
- (5)
$
(x y = u, x^2 / y=v) => (x=root(3,u v), y = root(3,u^2/v))\ \
(diff (x,y)) / (diff (
u,v
)) = abs(mat(
1/3 u^(-2/3) v^(1/3), 1/3 u^(1/3) v^(-2/3);
2/3 u^(-1/3) v^(-1/3), -1/3 u^(2/3) v^(-4/3)
)) = abs( -1/9v^(-1) - 2/9 v^(-1)) = 1 / 3 v^(-1) quad u,v > 0\ \
$
$
integral.double_D x y dif x dif y
&= 1 / 3integral.double_D u^1 v^(-1) dif u dif v\
&= 1 / 3integral_a^b dif u integral_c^d u / v dif v\
&= 1 / 3(integral_a^b u dif u)(integral_c^d (dif v) / v)\
&= 1 / 6 (b^2-a^2)(ln d - ln c)
$