-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.typ
60 lines (47 loc) · 1.16 KB
/
main.typ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#set heading(numbering: "1.")
= Fibonacci sequence
The Fibonacci sequence is defined through the
recurrence relation $F_n = F_(n-1) + F_(n-2)$.
It can also be expressed in _closed form:_
$
F_n = round(1 / sqrt(5) phi.alt^n), quad
phi.alt = (1 + sqrt(5)) / 2
$
#let count = 8
#let nums = range(1, count + 1)
#let fib(n) = (
if n <= 2 {
1
} else {
fib(n - 1) + fib(n - 2)
}
)
The first #count numbers of the sequence are:
#align(
center,
table(
columns: count,
..nums.map(n => $F_#n$),
..nums.map(n => str(fib(n))),
),
)
#pagebreak()
$
f(t x_1 + (1-t)x_2, t y_1 + (1-t)y_2) <= t f(x_1, y_1) + (1-t) f(x_2, y_2)
$
Taking the derivative of the above inequality with respect to $t$ gives
$
(d F) / (d t) = (x_1 - x_2) f'_x|_((t x_1 + (1-t)x_2, t y_1 + (1-t)y_2)) + (y_1 - y_2) f'_y|_((
t x_1 + (1-t)x_2, t y_1 + (1-t)y_2
)) - f(x_1, y_1) + f(x_2, y_2)
$
Meanwhile:
$
F(0) = f(x_2, y_2) - f(x_2, y_2) = 0 \
F(1) = f(x_1, y_1) - f(x_1, y_1) = 0 \
F(t) <=0 quad (t in [0, 1])
$
So it's clear that $F'(1) >= 0$, which means:
$
(d F) / (d t)|_(t=1) = (x_1 - x_2) f'_x|_((x_1, y_1)) + (y_1 - y_2) f'_y|_((x_1, y_1)) - f(x_1, y_1) + f(x_2, y_2) >= 0
$