-
Notifications
You must be signed in to change notification settings - Fork 562
/
Copy pathutils.py
328 lines (273 loc) · 12 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
"""
@author: Baixu Chen
@contact: [email protected]
"""
import math
import sys
import time
from PIL import Image
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data.dataset import Subset, ConcatDataset
import torchvision.transforms as T
import timm
from timm.data.auto_augment import auto_augment_transform, rand_augment_transform
sys.path.append('../../..')
from tllib.modules.classifier import Classifier
import tllib.vision.datasets as datasets
import tllib.vision.models as models
from tllib.vision.transforms import ResizeImage
from tllib.utils.metric import accuracy, ConfusionMatrix
from tllib.utils.meter import AverageMeter, ProgressMeter
def get_model_names():
return sorted(
name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name])
) + timm.list_models()
def get_model(model_name, pretrained=True, pretrained_checkpoint=None):
if model_name in models.__dict__:
# load models from common.vision.models
backbone = models.__dict__[model_name](pretrained=pretrained)
else:
# load models from pytorch-image-models
backbone = timm.create_model(model_name, pretrained=pretrained)
try:
backbone.out_features = backbone.get_classifier().in_features
backbone.reset_classifier(0, '')
except:
backbone.out_features = backbone.head.in_features
backbone.head = nn.Identity()
if pretrained_checkpoint:
print("=> loading pre-trained model from '{}'".format(pretrained_checkpoint))
pretrained_dict = torch.load(pretrained_checkpoint)
backbone.load_state_dict(pretrained_dict, strict=False)
return backbone
def get_dataset_names():
return sorted(
name for name in datasets.__dict__
if not name.startswith("__") and callable(datasets.__dict__[name])
)
def get_dataset(dataset_name, num_samples_per_class, root, labeled_train_transform, val_transform,
unlabeled_train_transform=None, seed=0):
if unlabeled_train_transform is None:
unlabeled_train_transform = labeled_train_transform
if dataset_name == 'OxfordFlowers102':
dataset = datasets.__dict__[dataset_name]
base_dataset = dataset(root=root, split='train', transform=labeled_train_transform, download=True)
# create labeled and unlabeled splits
labeled_idxes, unlabeled_idxes = x_u_split(num_samples_per_class, base_dataset.num_classes,
base_dataset.targets, seed=seed)
# labeled subset
labeled_train_dataset = Subset(base_dataset, labeled_idxes)
labeled_train_dataset.num_classes = base_dataset.num_classes
# unlabeled subset
base_dataset = dataset(root=root, split='train', transform=unlabeled_train_transform, download=True)
unlabeled_train_dataset = ConcatDataset([
Subset(base_dataset, unlabeled_idxes),
dataset(root=root, split='validation', download=True, transform=unlabeled_train_transform)
])
val_dataset = dataset(root=root, split='test', download=True, transform=val_transform)
else:
dataset = datasets.__dict__[dataset_name]
base_dataset = dataset(root=root, split='train', transform=labeled_train_transform, download=True)
# create labeled and unlabeled splits
labeled_idxes, unlabeled_idxes = x_u_split(num_samples_per_class, base_dataset.num_classes,
base_dataset.targets, seed=seed)
# labeled subset
labeled_train_dataset = Subset(base_dataset, labeled_idxes)
labeled_train_dataset.num_classes = base_dataset.num_classes
# unlabeled subset
base_dataset = dataset(root=root, split='train', transform=unlabeled_train_transform, download=True)
unlabeled_train_dataset = Subset(base_dataset, unlabeled_idxes)
val_dataset = dataset(root=root, split='test', download=True, transform=val_transform)
return labeled_train_dataset, unlabeled_train_dataset, val_dataset
def x_u_split(num_samples_per_class, num_classes, labels, seed):
"""
Construct labeled and unlabeled subsets, where the labeled subset is class balanced. Note that the resulting
subsets are **deterministic** with the same random seed.
"""
labels = np.array(labels)
assert num_samples_per_class * num_classes <= len(labels)
random_state = np.random.RandomState(seed)
# labeled subset
labeled_idxes = []
for i in range(num_classes):
ith_class_idxes = np.where(labels == i)[0]
ith_class_idxes = random_state.choice(ith_class_idxes, num_samples_per_class, False)
labeled_idxes.extend(ith_class_idxes)
# unlabeled subset
unlabeled_idxes = [i for i in range(len(labels)) if i not in labeled_idxes]
return labeled_idxes, unlabeled_idxes
def get_train_transform(resizing='default', random_horizontal_flip=True, auto_augment=None,
norm_mean=(0.485, 0.456, 0.406), norm_std=(0.229, 0.224, 0.225)):
if resizing == 'default':
transform = T.RandomResizedCrop(224, scale=(0.2, 1.))
elif resizing == 'cifar':
transform = T.Compose([
T.RandomCrop(size=32, padding=4, padding_mode='reflect'),
ResizeImage(224)
])
else:
raise NotImplementedError(resizing)
transforms = [transform]
if random_horizontal_flip:
transforms.append(T.RandomHorizontalFlip())
if auto_augment:
aa_params = dict(
translate_const=int(224 * 0.45),
img_mean=tuple([min(255, round(255 * x)) for x in norm_mean]),
interpolation=Image.BILINEAR
)
if auto_augment.startswith('rand'):
transforms.append(rand_augment_transform(auto_augment, aa_params))
else:
transforms.append(auto_augment_transform(auto_augment, aa_params))
transforms.extend([
T.ToTensor(),
T.Normalize(mean=norm_mean, std=norm_std)
])
return T.Compose(transforms)
def get_val_transform(resizing='default', norm_mean=(0.485, 0.456, 0.406), norm_std=(0.229, 0.224, 0.225)):
if resizing == 'default':
transform = T.Compose([
ResizeImage(256),
T.CenterCrop(224),
])
elif resizing == 'cifar':
transform = ResizeImage(224)
else:
raise NotImplementedError(resizing)
return T.Compose([
transform,
T.ToTensor(),
T.Normalize(mean=norm_mean, std=norm_std)
])
def convert_dataset(dataset):
"""
Converts a dataset which returns (img, label) pairs into one that returns (index, img, label) triplets.
"""
class DatasetWrapper:
def __init__(self):
self.dataset = dataset
def __getitem__(self, index):
return index, self.dataset[index]
def __len__(self):
return len(self.dataset)
return DatasetWrapper()
class ImageClassifier(Classifier):
def __init__(self, backbone: nn.Module, num_classes: int, bottleneck_dim=1024, **kwargs):
bottleneck = nn.Sequential(
nn.Linear(backbone.out_features, bottleneck_dim),
nn.BatchNorm1d(bottleneck_dim),
nn.ReLU(),
nn.Dropout(0.5)
)
bottleneck[0].weight.data.normal_(0, 0.005)
bottleneck[0].bias.data.fill_(0.1)
super(ImageClassifier, self).__init__(backbone, num_classes, bottleneck, bottleneck_dim, **kwargs)
def forward(self, x: torch.Tensor):
f = self.pool_layer(self.backbone(x))
f = self.bottleneck(f)
predictions = self.head(f)
return predictions
def get_cosine_scheduler_with_warmup(optimizer, T_max, num_cycles=7. / 16., num_warmup_steps=0,
last_epoch=-1):
"""
Cosine learning rate scheduler from `FixMatch: Simplifying Semi-Supervised Learning with
Consistency and Confidence (NIPS 2020) <https://arxiv.org/abs/2001.07685>`_.
Args:
optimizer (Optimizer): Wrapped optimizer.
T_max (int): Maximum number of iterations.
num_cycles (float): A scalar that controls the shape of cosine function. Default: 7/16.
num_warmup_steps (int): Number of iterations to warm up. Default: 0.
last_epoch (int): The index of last epoch. Default: -1.
"""
def _lr_lambda(current_step):
if current_step < num_warmup_steps:
_lr = float(current_step) / float(max(1, num_warmup_steps))
else:
num_cos_steps = float(current_step - num_warmup_steps)
num_cos_steps = num_cos_steps / float(max(1, T_max - num_warmup_steps))
_lr = max(0.0, math.cos(math.pi * num_cycles * num_cos_steps))
return _lr
return LambdaLR(optimizer, _lr_lambda, last_epoch)
def validate(val_loader, model, args, device, num_classes):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
confmat = ConfusionMatrix(num_classes)
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
images = images.to(device)
target = target.to(device)
# compute output
output = model(images)
loss = F.cross_entropy(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
confmat.update(target, output.argmax(1))
losses.update(loss.item(), images.size(0))
top1.update(acc1.item(), images.size(0))
top5.update(acc5.item(), images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
acc_global, acc_per_class, iu = confmat.compute()
mean_cls_acc = acc_per_class.mean().item() * 100
print(' * Mean Cls {:.3f}'.format(mean_cls_acc))
return top1.avg, mean_cls_acc
def empirical_risk_minimization(labeled_train_iter, model, optimizer, lr_scheduler, epoch, args, device):
batch_time = AverageMeter('Time', ':2.2f')
data_time = AverageMeter('Data', ':2.1f')
losses = AverageMeter('Loss', ':3.2f')
cls_accs = AverageMeter('Acc', ':3.1f')
progress = ProgressMeter(
args.iters_per_epoch,
[batch_time, data_time, losses, cls_accs],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
batch_size = args.batch_size
for i in range(args.iters_per_epoch):
(x_l, x_l_strong), labels_l = next(labeled_train_iter)
x_l = x_l.to(device)
x_l_strong = x_l_strong.to(device)
labels_l = labels_l.to(device)
# measure data loading time
data_time.update(time.time() - end)
# compute output
y_l = model(x_l)
y_l_strong = model(x_l_strong)
# cross entropy loss on both weak augmented and strong augmented samples
loss = F.cross_entropy(y_l, labels_l) + args.trade_off_cls_strong * F.cross_entropy(y_l_strong, labels_l)
# measure accuracy and record loss
losses.update(loss.item(), batch_size)
cls_acc = accuracy(y_l, labels_l)[0]
cls_accs.update(cls_acc.item(), batch_size)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)