-
Notifications
You must be signed in to change notification settings - Fork 562
/
Copy pathdst.sh
150 lines (128 loc) · 9.62 KB
/
dst.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env bash
# ImageNet Supervised Pretrain (ResNet50)
# ======================================================================================================================
# Food 101
CUDA_VISIBLE_DEVICES=0 python dst.py data/food101 -d Food101 --num-samples-per-class 4 -a resnet50 \
--lr 0.01 --finetune --threshold 0.8 --trade-off-self-training 1 --eta-prime 2 \
--seed 0 --log logs/dst/food101_4_labels_per_class
# ======================================================================================================================
# CIFAR 10
CUDA_VISIBLE_DEVICES=0 python dst.py data/cifar10 -d CIFAR10 --train-resizing 'cifar' --val-resizing 'cifar' \
--norm-mean 0.4912 0.4824 0.4467 --norm-std 0.2471 0.2435 0.2616 --num-samples-per-class 4 -a resnet50 \
--lr 0.003 --finetune --threshold 0.7 --trade-off-self-training 1 --eta-prime 2 \
--seed 0 --log logs/dst/cifar10_4_labels_per_class
# ======================================================================================================================
# CIFAR 100
CUDA_VISIBLE_DEVICES=0 python dst.py data/cifar100 -d CIFAR100 --train-resizing 'cifar' --val-resizing 'cifar' \
--norm-mean 0.5071 0.4867 0.4408 --norm-std 0.2675 0.2565 0.2761 --num-samples-per-class 4 -a resnet50 \
--lr 0.003 --finetune --threshold 0.7 --trade-off-self-training 1 --eta-prime 2 \
--seed 0 --log logs/dst/cifar100_4_labels_per_class
# ======================================================================================================================
# CUB 200
CUDA_VISIBLE_DEVICES=0 python dst.py data/cub200 -d CUB200 --num-samples-per-class 4 -a resnet50 \
--lr 0.01 --finetune --threshold 0.95 --trade-off-self-training 0.3 --eta-prime 2 \
--seed 0 --log logs/dst/cub200_4_labels_per_class
# ======================================================================================================================
# Aircraft
CUDA_VISIBLE_DEVICES=0 python dst.py data/aircraft -d Aircraft --num-samples-per-class 4 -a resnet50 \
--lr 0.01 --finetune --threshold 0.7 --trade-off-self-training 1 --eta-prime 1 \
--seed 0 --log logs/dst/aircraft_4_labels_per_class
# ======================================================================================================================
# StanfordCars
CUDA_VISIBLE_DEVICES=0 python dst.py data/cars -d StanfordCars --num-samples-per-class 4 -a resnet50 \
--lr 0.01 --finetune --threshold 0.7 --trade-off-self-training 1 --eta-prime 2 \
--seed 0 --log logs/dst/car_4_labels_per_class
# ======================================================================================================================
# SUN397
CUDA_VISIBLE_DEVICES=0 python dst.py data/sun397 -d SUN397 --num-samples-per-class 4 -a resnet50 \
--lr 0.01 --finetune --threshold 0.7 --trade-off-self-training 1 --eta-prime 2 \
--seed 0 --log logs/dst/sun_4_labels_per_class
# ======================================================================================================================
# DTD
CUDA_VISIBLE_DEVICES=0 python dst.py data/dtd -d DTD --num-samples-per-class 4 -a resnet50 \
--lr 0.003 --finetune --threshold 0.95 --trade-off-self-training 1 --eta-prime 2 \
--seed 0 --log logs/dst/dtd_4_labels_per_class
# ======================================================================================================================
# Oxford Pets
CUDA_VISIBLE_DEVICES=0 python dst.py data/pets -d OxfordIIITPets --num-samples-per-class 4 -a resnet50 \
--lr 0.001 --finetune --threshold 0.9 --trade-off-self-training 0.3 --eta-prime 2 \
--seed 0 --log logs/dst/pets_4_labels_per_class
# ======================================================================================================================
# Oxford Flowers
CUDA_VISIBLE_DEVICES=0 python dst.py data/flowers -d OxfordFlowers102 --num-samples-per-class 4 -a resnet50 \
--lr 0.01 --finetune --threshold 0.9 --trade-off-self-training 0.3 --eta-prime 1 \
--seed 0 --log logs/dst/flowers_4_labels_per_class
# ======================================================================================================================
# Caltech 101
CUDA_VISIBLE_DEVICES=0 python dst.py data/caltech101 -d Caltech101 --num-samples-per-class 4 -a resnet50 \
--lr 0.001 --finetune --threshold 0.7 --trade-off-self-training 1 --eta-prime 4 \
--seed 0 --log logs/dst/caltech_4_labels_per_class
# ImageNet Unsupervised Pretrain (MoCov2, ResNet50)
# ======================================================================================================================
# Food 101
CUDA_VISIBLE_DEVICES=0 python dst.py data/food101 -d Food101 --num-samples-per-class 4 -a resnet50 \
--pretrained-backbone checkpoints/moco_v2_800ep_backbone.pth \
--lr 0.003 --finetune --lr-scheduler cos --threshold 0.7 --trade-off-self-training 1 --eta-prime 1 \
--seed 0 --log logs/dst_moco_pretrain/food101_4_labels_per_class
# ======================================================================================================================
# CIFAR 10
CUDA_VISIBLE_DEVICES=0 python dst.py data/cifar10 -d CIFAR10 --train-resizing 'cifar' --val-resizing 'cifar' \
--norm-mean 0.4912 0.4824 0.4467 --norm-std 0.2471 0.2435 0.2616 --num-samples-per-class 4 -a resnet50 \
--pretrained-backbone checkpoints/moco_v2_800ep_backbone.pth \
--lr 0.001 --finetune --lr-scheduler cos --threshold 0.95 --trade-off-self-training 1 --eta-prime 2 \
--seed 0 --log logs/dst_moco_pretrain/cifar10_4_labels_per_class
# ======================================================================================================================
# CIFAR 100
CUDA_VISIBLE_DEVICES=0 python dst.py data/cifar100 -d CIFAR100 --train-resizing 'cifar' --val-resizing 'cifar' \
--norm-mean 0.5071 0.4867 0.4408 --norm-std 0.2675 0.2565 0.2761 --num-samples-per-class 4 -a resnet50 \
--pretrained-backbone checkpoints/moco_v2_800ep_backbone.pth \
--lr 0.001 --finetune --lr-scheduler cos --threshold 0.7 --trade-off-self-training 1 --eta-prime 1 \
--seed 0 --log logs/dst_moco_pretrain/cifar100_4_labels_per_class
# ======================================================================================================================
# CUB 200
CUDA_VISIBLE_DEVICES=0 python dst.py data/cub200 -d CUB200 --num-samples-per-class 4 -a resnet50 \
--pretrained-backbone checkpoints/moco_v2_800ep_backbone.pth \
--lr 0.01 --finetune --lr-scheduler cos --threshold 0.7 --trade-off-self-training 1 --eta-prime 2 \
--seed 0 --log logs/dst_moco_pretrain/cub200_4_labels_per_class
# ======================================================================================================================
# Aircraft
CUDA_VISIBLE_DEVICES=0 python dst.py data/aircraft -d Aircraft --num-samples-per-class 4 -a resnet50 \
--pretrained-backbone checkpoints/moco_v2_800ep_backbone.pth \
--lr 0.01 --finetune --lr-scheduler cos --threshold 0.7 --trade-off-self-training 1 --eta-prime 1 \
--seed 0 --log logs/dst_moco_pretrain/aircraft_4_labels_per_class
# ======================================================================================================================
# StanfordCars
CUDA_VISIBLE_DEVICES=0 python dst.py data/cars -d StanfordCars --num-samples-per-class 4 -a resnet50 \
--pretrained-backbone checkpoints/moco_v2_800ep_backbone.pth \
--lr 0.01 --finetune --lr-scheduler cos --threshold 0.7 --trade-off-self-training 1 --eta-prime 1 \
--seed 0 --log logs/dst_moco_pretrain/car_4_labels_per_class
# ======================================================================================================================
# SUN397
CUDA_VISIBLE_DEVICES=0 python dst.py data/sun397 -d SUN397 --num-samples-per-class 4 -a resnet50 \
--pretrained-backbone checkpoints/moco_v2_800ep_backbone.pth \
--lr 0.003 --finetune --lr-scheduler cos --threshold 0.7 --trade-off-self-training 0.3 --eta-prime 2 \
--seed 0 --log logs/dst_moco_pretrain/sun_4_labels_per_class
# ======================================================================================================================
# DTD
CUDA_VISIBLE_DEVICES=0 python dst.py data/dtd -d DTD --num-samples-per-class 4 -a resnet50 \
--pretrained-backbone checkpoints/moco_v2_800ep_backbone.pth \
--lr 0.001 --finetune --lr-scheduler cos --threshold 0.95 --trade-off-self-training 0.1 --eta-prime 3 \
--seed 0 --log logs/dst_moco_pretrain/dtd_4_labels_per_class
# ======================================================================================================================
# Oxford Pets
CUDA_VISIBLE_DEVICES=0 python dst.py data/pets -d OxfordIIITPets --num-samples-per-class 4 -a resnet50 \
--pretrained-backbone checkpoints/moco_v2_800ep_backbone.pth \
--lr 0.001 --finetune --lr-scheduler cos --threshold 0.7 --trade-off-self-training 0.1 --eta-prime 1 \
--seed 0 --log logs/dst_moco_pretrain/pets_4_labels_per_class
# ======================================================================================================================
# Oxford Flowers
CUDA_VISIBLE_DEVICES=0 python dst.py data/flowers -d OxfordFlowers102 --num-samples-per-class 4 -a resnet50 \
--pretrained-backbone checkpoints/moco_v2_800ep_backbone.pth \
--lr 0.003 --finetune --lr-scheduler cos --threshold 0.95 --trade-off-self-training 1 --eta-prime 1 \
--seed 0 --log logs/dst_moco_pretrain/flowers_4_labels_per_class
# ======================================================================================================================
# Caltech 101
CUDA_VISIBLE_DEVICES=0 python dst.py data/caltech101 -d Caltech101 --num-samples-per-class 4 -a resnet50 \
--pretrained-backbone checkpoints/moco_v2_800ep_backbone.pth \
--lr 0.001 --finetune --lr-scheduler cos --threshold 0.95 --trade-off-self-training 0.1 --eta-prime 1 \
--seed 0 --log logs/dst_moco_pretrain/caltech_4_labels_per_class