-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
322 lines (268 loc) · 11.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import re
from swda import CorpusReader
from collections import defaultdict
import pandas as pd
import logging
# import nltk
# nltk.download('punkt')
from nltk.tokenize import word_tokenize
import itertools
import matplotlib.pyplot as plt
import seaborn as sns
import tensorflow as tf
from keras.backend import set_session
import numpy as np
import random as rn
import torch
from torch import nn, optim
from torch.nn import functional as F
SEED = 20190222
np.random.seed(SEED)
rn.seed(SEED)
tf.set_random_seed(SEED)
def set_allow_growth(device="1"):
config = tf.ConfigProto()
config.gpu_options.allow_growth = True # dynamically grow the memory used on the GPU
config.gpu_options.visible_device_list = device
sess = tf.Session(config=config)
set_session(sess) # set this TensorFlow session as the default session for Keras
def create_logger(app_name="root", level=logging.DEBUG):
# 基礎設定
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s',
datefmt='%m-%d %H:%M',
handlers=[logging.FileHandler('logs/' + app_name + '.log', 'w', 'utf-8'), ])
# 定義 handler 輸出 sys.stderr
console = logging.StreamHandler()
console.setLevel(level)
# handler 設定輸出格式
formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
logger = logging.getLogger(app_name)
return logger
def get_swda():
# Import SwDA
corpus = CorpusReader('data/swda')
trans, trans_train, trans_test = [], [], []
test_list = [2121, 2131, 2151, 2229, 2335, 2434, 2441, 2461, 2503, 2632, 2724, 2752, 2753, 2836, 2838, 3528, 3756,
3942, 3994]
for tran in corpus.iter_transcripts():
trans.append(tran)
if tran.conversation_no in test_list:
trans_test.append(tran)
else:
trans_train.append(tran)
return corpus, trans, trans_train, trans_test
def load_single(dataset):
texts = []
labels = []
partition_to_n_row = {}
for partition in ['train', 'valid', 'test']:
with open("data/" + dataset + "/" + partition + ".seq.in") as fp:
lines = fp.read().splitlines()
texts.extend(lines)
partition_to_n_row[partition] = len(lines)
with open("data/" + dataset + "/" + partition + ".label") as fp:
labels.extend(fp.read().splitlines())
df = pd.DataFrame([texts, labels]).T
df.columns = ['text', 'label']
return df, partition_to_n_row
def get_stat(df):
df['content_words'] = df['text'].apply(lambda s: word_tokenize(s))
df['words_len'] = df['content_words'].apply(lambda s: len(s))
n_class = df.label.unique().shape[0]
n_sentences = df.shape[0]
n_conversation = df.shape[0]
n_average_w = df.words_len.mean()
n_max_w = df.words_len.max()
d = defaultdict(int)
for words in df['content_words'].tolist():
for word in words:
d[word] += 1
voc_size = len(d.keys())
print(pd.Series(d).value_counts().head())
print('#class', '#sentences', '#conversation', '#average_w', '#max_w', 'voc_size')
print(n_class, n_sentences, n_conversation, round(n_average_w, 2), n_max_w, voc_size)
sns.distplot(df['words_len'], hist=True, kde=True, label='words_len')
def preprocessing(trans):
X = []
for tran in trans:
caller_last_idx = {}
rows = []
idx = 0
for uttr in tran.utterances:
caller = uttr.caller
label = uttr.damsl_act_tag()
text = uttr.text.lower()
if uttr.text == "/":
text = re.sub("/.*", "", uttr.pos) # use POS text if text is empty
text = text.lower()
else:
text = re.sub('{[a-z]', "", text) # remove no-sentence element (left)
text = text.replace('uh-huh', "uh huh")
text = re.sub('[^a-zA-Z0-9\',.!?\- ]+', '', text) # allow only alphanumeric + some punctuation mark
if label == "+":
try:
rows[caller_last_idx[caller]]['text'] += text
except:
print("Label [+]: without previous tag", tran.conversation_no, uttr.caller, uttr.damsl_act_tag(),
uttr.text)
continue
else:
d = {
'conversation_no': tran.conversation_no,
'caller': caller,
'text': text,
'label': label
}
rows.append(d)
caller_last_idx[caller] = idx
idx += 1
X.append(pd.DataFrame(rows))
df = pd.concat(X, ignore_index=True)
return df
def get_score(cm, d_result, method):
idx = 0
rs, ps, fs = [], [], []
n_class = cm.shape[0]
for idx in range(n_class):
TP = cm[idx][idx]
r = TP / cm[idx].sum() if cm[idx].sum() != 0 else 0
p = TP / cm[:, idx].sum() if cm[:, idx].sum() != 0 else 0
f = 2 * r * p / (r + p) if (r + p) != 0 else 0
rs.append(r * 100)
ps.append(p * 100)
fs.append(f * 100)
f = np.mean(fs).round(4)
f_seen = np.mean(fs[:-1]).round(4)
f_unseen = round(fs[-1], 4)
r = np.mean(rs).round(2)
p = np.mean(ps).round(2)
r_seen = np.mean(rs[:-1]).round(2)
p_seen = np.mean(ps[:-1]).round(2)
r_unseen = round(rs[-1], 2)
p_unseen = round(ps[-1], 2)
# print("Overall(macro): ", f, r, p)
# print("Seen(macro): ", f_seen, r_seen, p_seen)
# print("Uneen: ", f_unseen, r_unseen, p_unseen)
d_result['all'][method] = f
d_result['seen'][method] = f_seen
d_result['unseen'][method] = f_unseen
return f, d_result
def plot_confusion_matrix(cm, classes, normalize=False,
title='Confusion matrix', figsize=(12, 10),
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
# Compute confusion matrix
np.set_printoptions(precision=2)
plt.figure(figsize=figsize)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
# plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.tight_layout()
plt.savefig('mat-.png')
class ModelWithTemperature(nn.Module):
"""
A thin decorator, which wraps a model with temperature scaling
model (nn.Module):
A classification neural network
NB: Output of the neural network should be the classification logits,
NOT the softmax (or log softmax)!
"""
def __init__(self):
super(ModelWithTemperature, self).__init__()
self.temperature = nn.Parameter(torch.ones(1) * 1.5)
def forward(self, input):
logits = self.model(input)
return self.temperature_scale(logits)
def temperature_scale(self, logits):
"""
Perform temperature scaling on logits
"""
# Expand temperature to match the size of logits
temperature = self.temperature.unsqueeze(1).expand(logits.size(0), logits.size(1))
result = logits / temperature
return result
# This function probably should live outside of this class, but whatever
def set_temperature(self, logits, labels):
"""
Tune the tempearature of the model (using the validation set).
We're going to set it to optimize NLL.
valid_loader (DataLoader): validation set loader
"""
self.cuda()
nll_criterion = nn.CrossEntropyLoss().cuda()
ece_criterion = _ECELoss().cuda()
# Calculate NLL and ECE before temperature scaling
before_temperature_nll = nll_criterion(logits, labels).item()
before_temperature_ece = ece_criterion(logits, labels).item()
print('Before temperature - NLL: %.3f, ECE: %.3f' % (before_temperature_nll, before_temperature_ece))
# Next: optimize the temperature w.r.t. NLL
optimizer = optim.LBFGS([self.temperature], lr=0.01, max_iter=50)
def eval():
loss = nll_criterion(self.temperature_scale(logits), labels)
loss.backward()
return loss
optimizer.step(eval)
# Calculate NLL and ECE after temperature scaling
after_temperature_nll = nll_criterion(self.temperature_scale(logits), labels).item()
after_temperature_ece = ece_criterion(self.temperature_scale(logits), labels).item()
print('Optimal temperature: %.3f' % self.temperature.item())
print('After temperature - NLL: %.3f, ECE: %.3f' % (after_temperature_nll, after_temperature_ece))
return self.temperature.item(), before_temperature_ece, after_temperature_ece
class _ECELoss(nn.Module):
"""
Calculates the Expected Calibration Error of a model.
(This isn't necessary for temperature scaling, just a cool metric).
The input to this loss is the logits of a model, NOT the softmax scores.
This divides the confidence outputs into equally-sized interval bins.
In each bin, we compute the confidence gap:
bin_gap = | avg_confidence_in_bin - accuracy_in_bin |
We then return a weighted average of the gaps, based on the number
of samples in each bin
See: Naeini, Mahdi Pakdaman, Gregory F. Cooper, and Milos Hauskrecht.
"Obtaining Well Calibrated Probabilities Using Bayesian Binning." AAAI.
2015.
"""
def __init__(self, n_bins=10):
"""
n_bins (int): number of confidence interval bins
"""
super(_ECELoss, self).__init__()
bin_boundaries = torch.linspace(0, 1, n_bins + 1)
self.bin_lowers = bin_boundaries[:-1]
self.bin_uppers = bin_boundaries[1:]
def forward(self, logits, labels):
softmaxes = F.softmax(logits, dim=1)
confidences, predictions = torch.max(softmaxes, 1)
accuracies = predictions.eq(labels)
ece = torch.zeros(1, device=logits.device)
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers):
# Calculated |confidence - accuracy| in each bin
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item())
prop_in_bin = in_bin.float().mean()
if prop_in_bin.item() > 0:
accuracy_in_bin = accuracies[in_bin].float().mean()
avg_confidence_in_bin = confidences[in_bin].mean()
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin
return ece