-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
246 lines (153 loc) · 9.26 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from configs.base import ParamManager, add_config_param
from data.base import DataManager
from methods import method_map
from backbones.base import ModelManager
from utils.functions import set_torch_seed, save_results, set_output_path
import argparse
import logging
import os
import datetime
import itertools
import warnings
import copy
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--logger_name', type=str, default='Multimodal Intent Recognition', help="Logger name for multimodal intent recognition.")
parser.add_argument('--dataset', type=str, default='MIntRec', help="The selected person id.")
parser.add_argument('--ood_dataset', type=str, default='MIntRec-OOD', help="The selected person id.")
parser.add_argument('--data_mode', type=str, default='multi-class', help="The selected person id.")
parser.add_argument('--multimodal_method', type=str, default='MAG', help="which method to use.")
parser.add_argument('--method', type=str, default='MAG', help="which method to use.")
parser.add_argument('--ood_detection_method', type=str, default='MAG', help="which method to use.")
parser.add_argument("--text_backbone", type=str, default='bert', help="which backbone to use for text modality")
parser.add_argument('--seed', type=int, default=0, help="The selected person id.")
parser.add_argument('--prompt_len', type=int, default=3, help="The parameter of TCL-MAP.")
parser.add_argument('--num_workers', type=int, default=8, help="The number of workers to load data.")
parser.add_argument('--log_id', type=str, default=None, help="The index of each logging file.")
parser.add_argument('--gpu_id', type=str, default='0', help="The selected person id.")
parser.add_argument("--data_path", default = '/home/sharing/disk2/wx/Datasets', type=str,
help="The input data dir. Should contain text, video and audio data for the task.")
parser.add_argument("--train", action="store_true", help="Whether to train the model.")
parser.add_argument("--ablation_type", type = str, default='full', help="Whether to train the model.")
parser.add_argument("--tune", action="store_true", help="Whether to tune the model with a series of hyper-parameters.")
parser.add_argument("--ood", action="store_true", help="Whether to use ood detection methods.")
parser.add_argument("--save_model", action="store_true", help="save trained-model for multimodal intent recognition.")
parser.add_argument("--save_results", action="store_true", help="save final results for multimodal intent recognition.")
parser.add_argument('--spectra_path', type=str, default='/home/zhanghanlei/zhanghanlei/MOOD/TMM-24/Revision/SPECTRA-base', help="Logger directory.")
parser.add_argument('--log_path', type=str, default='logs', help="Logger directory.")
parser.add_argument('--cache_path', type=str, default='cache', help="The caching directory for pre-trained models.")
parser.add_argument('--video_data_path', type=str, default='video_data', help="The directory of the video data.")
parser.add_argument('--audio_data_path', type=str, default='audio_data', help="The directory of the audio data.")
parser.add_argument('--video_feats_path', type=str, default='video_feats.pkl', help="The directory of the video features.")
parser.add_argument('--ood_video_feats_path', type=str, default='ood_video_feats.pkl', help="The directory of the video features.")
parser.add_argument('--ood_audio_feats_path', type=str, default='ood_audio_feats.pkl', help="The directory of the video features.")
parser.add_argument('--audio_feats_path', type=str, default='audio_feats.pkl', help="The directory of the audio features.")
parser.add_argument('--results_path', type=str, default='results', help="The path to save results.")
parser.add_argument("--output_path", default= '/home/sharing/disk1/wx/MMOOD/outputs', type=str,
help="The output directory where all train data will be written.")
parser.add_argument("--model_path", default= 'models', type=str,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--config_file_name", type=str, default='MISA.py', help = "The name of the config file.")
parser.add_argument("--results_file_name", type=str, default = 'results.csv', help="The file name of all the results.")
args = parser.parse_args()
return args
def set_logger(args):
if not os.path.exists(args.log_path):
os.makedirs(args.log_path)
time = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
args.logger_name = f"{args.method}_{args.ood_detection_method}_{args.dataset}_{args.data_mode}_{args.seed}"
args.log_id = f"{args.logger_name}_{time}"
logger = logging.getLogger(args.logger_name)
logger.setLevel(logging.DEBUG)
log_path = os.path.join(args.log_path, args.log_id + '.log')
fh = logging.FileHandler(log_path)
fh_formatter = logging.Formatter('%(asctime)s - %(message)s')
fh.setFormatter(fh_formatter)
fh.setLevel(logging.INFO)
logger.addHandler(fh)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
ch_formatter = logging.Formatter('%(message)s')
ch.setFormatter(ch_formatter)
logger.addHandler(ch)
return logger
def set_up(args):
if args.method == 'mmood':
save_model_name = f"{args.method}_{args.multimodal_method}_{args.dataset}_{args.text_backbone}_{args.data_mode}_{args.seed}"
elif args.method == 'mmoid':
save_model_name = f"{args.method}_{args.multimodal_method}_{args.dataset}_{args.text_backbone}_{args.data_mode}_{args.seed}"
elif args.method in ['mult_ood', 'mmim_ood', 'mag_ood']:
save_model_name = f"{args.method}_{args.dataset}_{args.text_backbone}_{args.data_mode}_{args.seed}"
else:
save_model_name = f"{args.method}_{args.dataset}_{args.text_backbone}_{args.data_mode}_{args.seed}"
args.pred_output_path, args.model_output_path = set_output_path(args, save_model_name)
args.pretrained_save_model = os.path.join(args.output_path, f"binary_{args.method}_{args.dataset}_{args.text_backbone}_{args.seed}")
set_torch_seed(args.seed)
return args
def work(args, data, logger, debug_args=None, ind_args = None):
set_torch_seed(args.seed)
method_manager = method_map[args.method]
if args.method.startswith('text'):
method = method_manager(args, data)
elif args.method.startswith(('mmood', 'mmoid')):
ind_model = ModelManager(ind_args)
method = method_manager(args, data, ind_args, ind_model)
else:
model = ModelManager(args)
method = method_manager(args, data, model)
logger.info('Multimodal Intent Recognition begins...')
if args.train:
logger.info('Training begins...')
method._train(args)
logger.info('Training is finished...')
logger.info('Testing begins...')
outputs = method._test(args)
logger.info('Testing is finished...')
logger.info('Multimodal intent recognition is finished...')
if args.save_results:
logger.info('Results are saved in %s', str(os.path.join(args.results_path, args.results_file_name)))
save_results(args, outputs, debug_args=debug_args)
def run(args, data, logger, ind_args = None):
debug_args = {}
for k,v in args.items():
if isinstance(v, list):
debug_args[k] = v
for result in itertools.product(*debug_args.values()):
for i, key in enumerate(debug_args.keys()):
args[key] = result[i]
work(args, data, logger, debug_args, ind_args)
if __name__ == '__main__':
warnings.filterwarnings('ignore')
args = parse_arguments()
logger = set_logger(args)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
param = ParamManager(args)
args = param.args
data = DataManager(args)
seeds = [0, 1, 2, 3, 4]
for seed in seeds:
args.seed = seed
if args.method in ['mmood', 'mmoid']:
ind_args = copy.deepcopy(args)
args = add_config_param(args, args.config_file_name)
args = set_up(args)
logger.info("="*30+" Params "+"="*30)
for k in args.keys():
logger.info(f"{k}: {args[k]}")
logger.info("="*30+" End Params "+"="*30)
ind_args.method = args.multimodal_method
ind_args.train = args.train_ind
ind_args.save_results = True
ind_config_file_name = args.multimodal_method
ind_args = add_config_param(ind_args, ind_config_file_name)
ind_args = set_up(ind_args)
run(ind_args, data, logger)
run(args, data, logger, ind_args)
else:
args = add_config_param(args, args.config_file_name)
args = set_up(args)
logger.info("="*30+" Params "+"="*30)
for k in args.keys():
logger.info(f"{k}: {args[k]}")
logger.info("="*30+" End Params "+"="*30)
run(args, data, logger)