-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmodel.py
32 lines (26 loc) · 1.29 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from util import *
class BertForModel(BertPreTrainedModel):
def __init__(self,config,num_labels):
super(BertForModel, self).__init__(config)
self.num_labels = num_labels
self.bert = BertModel(config)
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.ReLU()
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size,num_labels)
self.apply(self.init_bert_weights)
def forward(self, input_ids = None, token_type_ids = None, attention_mask=None , labels = None,
feature_ext = False, mode = None, centroids = None):
encoded_layer_12, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers = True)
pooled_output = self.dense(encoded_layer_12[-1].mean(dim = 1))
pooled_output = self.activation(pooled_output)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
if feature_ext:
return pooled_output
else:
if mode == 'train':
loss = nn.CrossEntropyLoss()(logits,labels)
return loss
else:
return pooled_output, logits