forked from thuml/Transfer-Learning-Library
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbaseline.py
276 lines (236 loc) · 12.4 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
"""
@author: Baixu Chen
@contact: [email protected]
"""
import random
import time
import warnings
import argparse
import shutil
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
from torch.nn import DataParallel
import torch.backends.cudnn as cudnn
from torch.optim import Adam
from torch.utils.data import DataLoader
import utils
from tllib.vision.models.reid.loss import CrossEntropyLossWithLabelSmooth, SoftTripletLoss
from tllib.vision.models.reid.identifier import ReIdentifier
import tllib.vision.datasets.reid as datasets
from tllib.vision.datasets.reid.convert import convert_to_pytorch_dataset
from tllib.utils.scheduler import WarmupMultiStepLR
from tllib.utils.metric.reid import validate, visualize_ranked_results
from tllib.utils.data import ForeverDataIterator, RandomMultipleGallerySampler
from tllib.utils.metric import accuracy
from tllib.utils.meter import AverageMeter, ProgressMeter
from tllib.utils.logger import CompleteLogger
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main(args: argparse.Namespace):
logger = CompleteLogger(args.log, args.phase)
print(args)
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
cudnn.benchmark = True
# Data loading code
train_transform = utils.get_train_transform(args.height, args.width, args.train_resizing,
random_horizontal_flip=True,
random_color_jitter=False,
random_gray_scale=False)
val_transform = utils.get_val_transform(args.height, args.width)
print("train_transform: ", train_transform)
print("val_transform: ", val_transform)
working_dir = osp.dirname(osp.abspath(__file__))
root = osp.join(working_dir, args.root)
# source dataset
source_dataset = datasets.__dict__[args.source](root=osp.join(root, args.source.lower()))
sampler = RandomMultipleGallerySampler(source_dataset.train, args.num_instances)
train_loader = DataLoader(
convert_to_pytorch_dataset(source_dataset.train, root=source_dataset.images_dir, transform=train_transform),
batch_size=args.batch_size, num_workers=args.workers, sampler=sampler, pin_memory=True, drop_last=True)
train_iter = ForeverDataIterator(train_loader)
val_loader = DataLoader(
convert_to_pytorch_dataset(list(set(source_dataset.query) | set(source_dataset.gallery)),
root=source_dataset.images_dir,
transform=val_transform),
batch_size=args.batch_size, num_workers=args.workers, shuffle=False, pin_memory=True)
# target dataset
target_dataset = datasets.__dict__[args.target](root=osp.join(root, args.target.lower()))
test_loader = DataLoader(
convert_to_pytorch_dataset(list(set(target_dataset.query) | set(target_dataset.gallery)),
root=target_dataset.images_dir,
transform=val_transform),
batch_size=args.batch_size, num_workers=args.workers, shuffle=False, pin_memory=True)
# create model
num_classes = source_dataset.num_train_pids
backbone = utils.get_model(args.arch)
pool_layer = nn.Identity() if args.no_pool else None
model = ReIdentifier(backbone, num_classes, finetune=args.finetune, pool_layer=pool_layer).to(device)
model = DataParallel(model)
# define optimizer and learning rate scheduler
optimizer = Adam(model.module.get_parameters(base_lr=args.lr, rate=args.rate), args.lr,
weight_decay=args.weight_decay)
lr_scheduler = WarmupMultiStepLR(optimizer, args.milestones, gamma=0.1, warmup_factor=0.1,
warmup_steps=args.warmup_steps)
# resume from the best checkpoint
if args.phase != 'train':
checkpoint = torch.load(logger.get_checkpoint_path('best'), map_location='cpu')
model.load_state_dict(checkpoint)
# analysis the model
if args.phase == 'analysis':
# plot t-SNE
utils.visualize_tsne(source_loader=val_loader, target_loader=test_loader, model=model,
filename=osp.join(logger.visualize_directory, 'analysis', 'TSNE.pdf'), device=device)
# visualize ranked results
visualize_ranked_results(test_loader, model, target_dataset.query, target_dataset.gallery, device,
visualize_dir=logger.visualize_directory, width=args.width, height=args.height,
rerank=args.rerank)
return
if args.phase == 'test':
print("Test on source domain:")
validate(val_loader, model, source_dataset.query, source_dataset.gallery, device, cmc_flag=True,
rerank=args.rerank)
print("Test on target domain:")
validate(test_loader, model, target_dataset.query, target_dataset.gallery, device, cmc_flag=True,
rerank=args.rerank)
return
# define loss function
criterion_ce = CrossEntropyLossWithLabelSmooth(num_classes).to(device)
criterion_triplet = SoftTripletLoss(margin=args.margin).to(device)
# start training
best_val_mAP = 0.
best_test_mAP = 0.
for epoch in range(args.epochs):
# print learning rate
print(lr_scheduler.get_lr())
# train for one epoch
train(train_iter, model, criterion_ce, criterion_triplet, optimizer, epoch, args)
# update learning rate
lr_scheduler.step()
if (epoch + 1) % args.eval_step == 0 or (epoch == args.epochs - 1):
# evaluate on validation set
print("Validation on source domain...")
_, val_mAP = validate(val_loader, model, source_dataset.query, source_dataset.gallery, device,
cmc_flag=True)
# remember best mAP and save checkpoint
torch.save(model.state_dict(), logger.get_checkpoint_path('latest'))
if val_mAP > best_val_mAP:
shutil.copy(logger.get_checkpoint_path('latest'), logger.get_checkpoint_path('best'))
best_val_mAP = max(val_mAP, best_val_mAP)
# evaluate on test set
print("Test on target domain...")
_, test_mAP = validate(test_loader, model, target_dataset.query, target_dataset.gallery, device,
cmc_flag=True, rerank=args.rerank)
best_test_mAP = max(test_mAP, best_test_mAP)
# evaluate on test set
model.load_state_dict(torch.load(logger.get_checkpoint_path('best')))
print("Test on target domain:")
_, test_mAP = validate(test_loader, model, target_dataset.query, target_dataset.gallery, device,
cmc_flag=True, rerank=args.rerank)
print("test mAP on target = {}".format(test_mAP))
print("oracle mAP on target = {}".format(best_test_mAP))
logger.close()
def train(train_iter: ForeverDataIterator, model, criterion_ce: CrossEntropyLossWithLabelSmooth,
criterion_triplet: SoftTripletLoss, optimizer: Adam, epoch: int, args: argparse.Namespace):
batch_time = AverageMeter('Time', ':4.2f')
data_time = AverageMeter('Data', ':3.1f')
losses_ce = AverageMeter('CeLoss', ':3.2f')
losses_triplet = AverageMeter('TripletLoss', ':3.2f')
losses = AverageMeter('Loss', ':3.2f')
cls_accs = AverageMeter('Cls Acc', ':3.1f')
progress = ProgressMeter(
args.iters_per_epoch,
[batch_time, data_time, losses_ce, losses_triplet, losses, cls_accs],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i in range(args.iters_per_epoch):
x, _, labels, _ = next(train_iter)
x = x.to(device)
labels = labels.to(device)
# measure data loading time
data_time.update(time.time() - end)
# compute output
y, f = model(x)
# cross entropy loss
loss_ce = criterion_ce(y, labels)
# triplet loss
loss_triplet = criterion_triplet(f, f, labels)
loss = loss_ce + loss_triplet * args.trade_off
cls_acc = accuracy(y, labels)[0]
losses_ce.update(loss_ce.item(), x.size(0))
losses_triplet.update(loss_triplet.item(), x.size(0))
losses.update(loss.item(), x.size(0))
cls_accs.update(cls_acc.item(), x.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
if __name__ == '__main__':
dataset_names = sorted(
name for name in datasets.__dict__
if not name.startswith("__") and callable(datasets.__dict__[name])
)
parser = argparse.ArgumentParser(description="Baseline for Domain Generalizable ReID")
# dataset parameters
parser.add_argument('root', metavar='DIR',
help='root path of dataset')
parser.add_argument('-s', '--source', type=str, help='source domain')
parser.add_argument('-t', '--target', type=str, help='target domain')
parser.add_argument('--train-resizing', type=str, default='default')
# model parameters
parser.add_argument('-a', '--arch', metavar='ARCH', default='reid_resnet50',
choices=utils.get_model_names(),
help='backbone architecture: ' +
' | '.join(utils.get_model_names()) +
' (default: reid_resnet50)')
parser.add_argument('--no-pool', action='store_true', help='no pool layer after the feature extractor.')
parser.add_argument('--finetune', action='store_true', help='whether use 10x smaller lr for backbone')
parser.add_argument('--rate', type=float, default=0.2)
# training parameters
parser.add_argument('--trade-off', type=float, default=1,
help='trade-off hyper parameter between cross entropy loss and triplet loss')
parser.add_argument('--margin', type=float, default=0.0, help='margin for the triplet loss with batch hard')
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('-b', '--batch-size', type=int, default=16)
parser.add_argument('--height', type=int, default=256, help="input height")
parser.add_argument('--width', type=int, default=128, help="input width")
parser.add_argument('--num-instances', type=int, default=4,
help="each minibatch consist of "
"(batch_size // num_instances) identities, and "
"each identity has num_instances instances, "
"default: 4")
parser.add_argument('--lr', type=float, default=0.00035,
help="initial learning rate")
parser.add_argument('--weight-decay', type=float, default=5e-4)
parser.add_argument('--epochs', type=int, default=80)
parser.add_argument('--warmup-steps', type=int, default=10, help='number of warp-up steps')
parser.add_argument('--milestones', nargs='+', type=int, default=[40, 70],
help='milestones for the learning rate decay')
parser.add_argument('--eval-step', type=int, default=40)
parser.add_argument('--iters-per-epoch', type=int, default=400)
parser.add_argument('--print-freq', type=int, default=40)
parser.add_argument('--seed', default=None, type=int, help='seed for initializing training.')
parser.add_argument('--rerank', action='store_true', help="evaluation only")
parser.add_argument("--log", type=str, default='baseline',
help="Where to save logs, checkpoints and debugging images.")
parser.add_argument("--phase", type=str, default='train', choices=['train', 'test', 'analysis'],
help="When phase is 'test', only test the model."
"When phase is 'analysis', only analysis the model.")
args = parser.parse_args()
main(args)