forked from huggingface/datasets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
244 lines (212 loc) · 7.39 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Lint as: python3
""" HuggingFace/Datasets is an open library of NLP datasets.
Note:
VERSION needs to be formatted following the MAJOR.MINOR.PATCH convention
(we need to follow this convention to be able to retrieve versioned scripts)
Simple check list for release from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py
To create the package for pypi.
0. Prerequisites:
- Dependencies:
- twine: "pip install twine"
- Create an account in (and join the 'datasets' project):
- PyPI: https://pypi.org/
- Test PyPI: https://test.pypi.org/
1. Change the version in:
- __init__.py
- setup.py
- docs/source/conf.py
2. Commit these changes: "git commit -m 'Release: VERSION'"
3. Add a tag in git to mark the release: "git tag VERSION -m 'Add tag VERSION for pypi'"
Push the tag to remote: git push --tags origin master
4. Build both the sources and the wheel. Do not change anything in setup.py between
creating the wheel and the source distribution (obviously).
For the wheel, run: "python setup.py bdist_wheel" in the top level directory.
(this will build a wheel for the python version you use to build it).
For the sources, run: "python setup.py sdist"
You should now have a /dist directory with both .whl and .tar.gz source versions.
5. Check that everything looks correct by uploading the package to the pypi test server:
twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
Check that you can install it in a virtualenv/notebook by running:
pip install huggingface_hub
pip install fsspec
pip install -U tqdm
pip install -i https://testpypi.python.org/pypi datasets
6. Upload the final version to actual pypi:
twine upload dist/* -r pypi
7. Fill release notes in the tag in github once everything is looking hunky-dory.
8. Update the documentation commit in .circleci/deploy.sh for the accurate documentation to be displayed.
Update the version mapping in docs/source/_static/js/custom.js with: "python utils/release.py --version VERSION"
Set version to X.X.X+1.dev0 (e.g. 1.8.0 -> 1.8.1.dev0) in:
- setup.py
- __init__.py
9. Commit these changes: "git commit -m 'Release docs'"
Push the commit to remote: "git push origin master"
"""
import datetime
import itertools
import os
import sys
from setuptools import find_packages, setup
DOCLINES = __doc__.split("\n")
REQUIRED_PKGS = [
# We use numpy>=1.17 to have np.random.Generator (Dataset shuffling)
"numpy>=1.17",
# Backend and serialization.
# Minimum 3.0.0 to support mix of struct and list types in parquet, and batch iterators of parquet data
# pyarrow 4.0.0 introduced segfault bug, see: https://github.com/huggingface/datasets/pull/2268
"pyarrow>=1.0.0,!=4.0.0",
# For smart caching dataset processing
"dill",
# For performance gains with apache arrow
"pandas",
# for downloading datasets over HTTPS
"requests>=2.19.0",
# progress bars in download and scripts
"tqdm>=4.62.1",
# dataclasses for Python versions that don't have it
"dataclasses;python_version<'3.7'",
# for fast hashing
"xxhash",
# for better multiprocessing
"multiprocess",
# to get metadata of optional dependencies such as torch or tensorflow for Python versions that don't have it
"importlib_metadata;python_version<'3.8'",
# to save datasets locally or on any filesystem
# minimum 2021.05.0 to have the AbstractArchiveFileSystem
"fsspec[http]>=2021.05.0",
# for data streaming via http
"aiohttp",
# To get datasets from the Datasets Hub on huggingface.co
"huggingface_hub>=0.0.14,<0.1.0",
# Utilities from PyPA to e.g., compare versions
"packaging",
]
BENCHMARKS_REQUIRE = [
"numpy==1.18.5",
"tensorflow==2.3.0",
"torch==1.6.0",
"transformers==3.0.2",
]
TESTS_REQUIRE = [
# test dependencies
"absl-py",
"pytest",
"pytest-xdist",
# optional dependencies
"apache-beam>=2.26.0",
"elasticsearch",
"aiobotocore",
"boto3",
"botocore",
"faiss-cpu",
"fsspec[s3]",
"moto[s3,server]==2.0.4",
"rarfile>=4.0",
"s3fs==2021.08.1",
"tensorflow>=2.3",
"torch",
"transformers",
# datasets dependencies
"bs4",
"conllu",
"langdetect",
"lxml",
"mwparserfromhell",
"nltk",
"openpyxl",
"py7zr",
"tldextract",
"zstandard",
# metrics dependencies
"bert_score>=0.3.6",
"rouge_score",
"sacrebleu",
"scipy",
"seqeval",
"scikit-learn",
"jiwer",
"sentencepiece", # for bleurt
# to speed up pip backtracking
"toml>=0.10.1",
"requests_file>=1.5.1",
"tldextract>=3.1.0",
"texttable>=1.6.3",
"Werkzeug>=1.0.1",
"six~=1.15.0",
# metadata validation
"importlib_resources;python_version<'3.7'",
]
if os.name == "nt": # windows
TESTS_REQUIRE.remove("faiss-cpu") # faiss doesn't exist on windows
else:
# dependencies of unbabel-comet
# only test if not on windows since there're issues installing fairseq on windows
TESTS_REQUIRE.extend(
[
"wget>=3.2",
"pytorch-nlp==0.5.0",
"pytorch_lightning",
"fastBPE==0.1.0",
"fairseq",
]
)
QUALITY_REQUIRE = ["black==21.4b0", "flake8==3.7.9", "isort", "pyyaml>=5.3.1"]
EXTRAS_REQUIRE = {
"apache-beam": ["apache-beam>=2.26.0"],
"tensorflow": ["tensorflow>=2.2.0"],
"tensorflow_gpu": ["tensorflow-gpu>=2.2.0"],
"torch": ["torch"],
"s3": [
"fsspec",
"boto3",
"botocore",
"s3fs",
],
"streaming": [], # for backward compatibility
"dev": TESTS_REQUIRE + QUALITY_REQUIRE,
"tests": TESTS_REQUIRE,
"quality": QUALITY_REQUIRE,
"benchmarks": BENCHMARKS_REQUIRE,
"docs": [
"docutils==0.16.0",
"recommonmark",
"sphinx==3.1.2",
"sphinx-markdown-tables",
"sphinx-rtd-theme==0.4.3",
"sphinxext-opengraph==0.4.1",
"sphinx-copybutton",
"fsspec",
"s3fs",
],
}
setup(
name="datasets",
version="1.11.1.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
description=DOCLINES[0],
long_description="\n".join(DOCLINES[2:]),
author="HuggingFace Inc.",
author_email="[email protected]",
url="https://github.com/huggingface/datasets",
download_url="https://github.com/huggingface/datasets/tags",
license="Apache 2.0",
package_dir={"": "src"},
packages=find_packages("src"),
package_data={"datasets": ["py.typed", "scripts/templates/*"], "datasets.utils.resources": ["*.json", "*.yaml"]},
entry_points={"console_scripts": ["datasets-cli=datasets.commands.datasets_cli:main"]},
install_requires=REQUIRED_PKGS,
extras_require=EXTRAS_REQUIRE,
classifiers=[
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
keywords="datasets machine learning datasets metrics",
zip_safe=False, # Required for mypy to find the py.typed file
)