-
Notifications
You must be signed in to change notification settings - Fork 152
/
step3_texture.py
200 lines (160 loc) · 7.04 KB
/
step3_texture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
import cv2
import h5py
import argparse
import numpy as np
import cPickle as pkl
from opendr.renderer import ColoredRenderer
from opendr.camera import ProjectPoints
from opendr.geometry import VertNormals
from tex.iso import Isomapper, IsoColoredRenderer
from util import im
from util.logger import log
from models.smpl import Smpl
def main(consensus_file, camera_file, video_file, pose_file, masks_file, out, model_file, resolution, num,
first_frame, last_frame, display):
# load data
with open(model_file, 'rb') as fp:
model_data = pkl.load(fp)
with open(camera_file, 'rb') as fp:
camera_data = pkl.load(fp)
with open(consensus_file, 'rb') as fp:
consensus_data = pkl.load(fp)
pose_data = h5py.File(pose_file, 'r')
poses = pose_data['pose'][first_frame:last_frame]
trans = pose_data['trans'][first_frame:last_frame]
masks = h5py.File(masks_file, 'r')['masks'][first_frame:last_frame]
num_frames = masks.shape[0]
indices_texture = np.ceil(np.arange(num) * num_frames * 1. / num).astype(np.int)
vt = np.load('assets/basicModel_vt.npy')
ft = np.load('assets/basicModel_ft.npy')
# init
base_smpl = Smpl(model_data)
base_smpl.betas[:] = consensus_data['betas']
base_smpl.v_personal[:] = consensus_data['v_personal']
bgcolor = np.array([1., 0.2, 1.])
iso = Isomapper(vt, ft, base_smpl.f, resolution, bgcolor=bgcolor)
iso_vis = IsoColoredRenderer(vt, ft, base_smpl.f, resolution)
camera = ProjectPoints(t=camera_data['camera_t'], rt=camera_data['camera_rt'], c=camera_data['camera_c'],
f=camera_data['camera_f'], k=camera_data['camera_k'], v=base_smpl)
frustum = {'near': 0.1, 'far': 1000., 'width': int(camera_data['width']), 'height': int(camera_data['height'])}
rn_vis = ColoredRenderer(f=base_smpl.f, frustum=frustum, camera=camera, num_channels=1)
cap = cv2.VideoCapture(video_file)
for _ in range(first_frame):
cap.grab()
# get part-textures
i = first_frame
tex_agg = np.zeros((resolution, resolution, 25, 3))
tex_agg[:] = np.nan
normal_agg = np.ones((resolution, resolution, 25)) * 0.2
vn = VertNormals(f=base_smpl.f, v=base_smpl)
static_indices = np.indices((resolution, resolution))
while cap.isOpened() and i < indices_texture[-1]:
if i in indices_texture:
log.info('Getting part texture from frame {}...'.format(i))
_, frame = cap.read()
mask = np.array(masks[i], dtype=np.uint8)
pose_i = np.array(poses[i], dtype=np.float32)
trans_i = np.array(trans[i], dtype=np.float32)
base_smpl.pose[:] = pose_i
base_smpl.trans[:] = trans_i
# which faces have been seen and are projected into the silhouette?
visibility = rn_vis.visibility_image.ravel()
visible = np.nonzero(visibility != 4294967295)[0]
proj = camera.r
in_viewport = np.logical_and(
np.logical_and(np.round(camera.r[:, 0]) >= 0, np.round(camera.r[:, 0]) < frustum['width']),
np.logical_and(np.round(camera.r[:, 1]) >= 0, np.round(camera.r[:, 1]) < frustum['height']),
)
in_mask = np.zeros(camera.shape[0], dtype=np.bool)
idx = np.round(proj[in_viewport][:, [1, 0]].T).astype(np.int).tolist()
in_mask[in_viewport] = mask[idx]
faces_in_mask = np.where(np.min(in_mask[base_smpl.f], axis=1))[0]
visible_faces = np.intersect1d(faces_in_mask, visibility[visible])
# get the current unwrap
part_tex = iso.render(frame / 255., camera, visible_faces)
# angle under which the texels have been seen
points = np.hstack((proj, np.ones((proj.shape[0], 1))))
points3d = camera.unproject_points(points)
points3d /= np.linalg.norm(points3d, axis=1).reshape(-1, 1)
alpha = np.sum(points3d * -vn.r, axis=1).reshape(-1, 1)
alpha[alpha < 0] = 0
iso_normals = iso_vis.render(alpha)[:, :, 0]
iso_normals[np.all(part_tex == bgcolor, axis=2)] = 0
# texels to consider
part_mask = np.zeros((resolution, resolution))
min_normal = np.min(normal_agg, axis=2)
part_mask[iso_normals > min_normal] = 1.
# update best seen texels
where = np.argmax(np.atleast_3d(iso_normals) - normal_agg, axis=2)
idx = np.dstack((static_indices[0], static_indices[1], where))[part_mask == 1]
tex_agg[list(idx[:, 0]), list(idx[:, 1]), list(idx[:, 2])] = part_tex[part_mask == 1]
normal_agg[list(idx[:, 0]), list(idx[:, 1]), list(idx[:, 2])] = iso_normals[part_mask == 1]
if display:
im.show(part_tex, id='part_tex', waittime=1)
else:
cap.grab()
i += 1
# merge textures
log.info('Computing median texture...')
tex_median = np.nanmedian(tex_agg, axis=2)
log.info('Inpainting unseen areas...')
where = np.max(normal_agg, axis=2) > 0.2
tex_mask = iso.iso_mask
mask_final = np.float32(where)
kernel_size = np.int(resolution * 0.02)
kernel = np.ones((kernel_size, kernel_size), np.uint8)
inpaint_area = cv2.dilate(tex_mask, kernel) - mask_final
tex_final = cv2.inpaint(np.uint8(tex_median * 255), np.uint8(inpaint_area * 255), 3, cv2.INPAINT_TELEA)
cv2.imwrite(out, tex_final)
log.info('Done.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'consensus',
type=str,
help="pkl file that contains consensus")
parser.add_argument(
'camera',
type=str,
help="pkl file that contains camera settings")
parser.add_argument(
'video',
type=str,
help="Input video")
parser.add_argument(
'pose_file',
type=str,
help="File that contains poses")
parser.add_argument(
'masks_file',
type=str,
help="File that contains segmentations")
parser.add_argument(
'out',
type=str,
help="Out file path")
parser.add_argument(
'--model', '-m',
default='vendor/smpl/models/basicmodel_m_lbs_10_207_0_v1.0.0.pkl',
help='Path to SMPL model')
parser.add_argument(
'--resolution', '-r', default=1000, type=int,
help="Output resolution")
parser.add_argument(
'--num', '-n', default=120, type=int,
help="Number of used frames")
parser.add_argument(
'--first_frame', '-f', default=0, type=int,
help="First frame to use")
parser.add_argument(
'--last_frame', '-l', default=2000, type=int,
help="Last frame to use")
parser.add_argument(
'--display', '-d',
action='store_true',
help="Enable visualization")
args = parser.parse_args()
main(args.consensus, args.camera, args.video, args.pose_file, args.masks_file, args.out, args.model,
args.resolution, args.num, args.first_frame, args.last_frame, args.display)