forked from linux-sunxi/sunxi-tools
-
Notifications
You must be signed in to change notification settings - Fork 7
/
fel_lib.c
822 lines (740 loc) · 28 KB
/
fel_lib.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
/*
* Copyright (C) 2012 Henrik Nordstrom <[email protected]>
* Copyright (C) 2015 Siarhei Siamashka <[email protected]>
* Copyright (C) 2016 Bernhard Nortmann <[email protected]>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**********************************************************************
* USB library and helper functions for the FEL utility
**********************************************************************/
#include "portable_endian.h"
#include "fel_lib.h"
#include <libusb.h>
#include <assert.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define USB_TIMEOUT 10000 /* 10 seconds */
static bool fel_lib_initialized = false;
/* This is out 'private' data type that will be part of a "FEL device" handle */
struct _felusb_handle {
libusb_device_handle *handle;
int endpoint_out, endpoint_in;
bool iface_detached;
};
/* a helper function to report libusb errors */
void usb_error(int rc, const char *caption, int exitcode)
{
if (caption)
fprintf(stderr, "%s ", caption);
#if defined(LIBUSBX_API_VERSION) && (LIBUSBX_API_VERSION >= 0x01000102)
fprintf(stderr, "ERROR %d: %s\n", rc, libusb_strerror(rc));
#else
/* assume that libusb_strerror() is missing in the libusb API */
fprintf(stderr, "ERROR %d\n", rc);
#endif
if (exitcode != 0)
exit(exitcode);
}
/*
* AW_USB_MAX_BULK_SEND and the timeout constant USB_TIMEOUT are related.
* Both need to be selected in a way that transferring the maximum chunk size
* with (SoC-specific) slow transfer speed won't time out.
*
* The 512 KiB here are chosen based on the assumption that we want a 10 seconds
* timeout, and "slow" transfers take place at approx. 64 KiB/sec - so we can
* expect the maximum chunk being transmitted within 8 seconds or less.
*/
static const int AW_USB_MAX_BULK_SEND = 512 * 1024; /* 512 KiB per bulk request */
void usb_bulk_send(libusb_device_handle *usb, int ep, const void *data,
size_t length, bool progress)
{
/*
* With no progress notifications, we'll use the maximum chunk size.
* Otherwise, it's useful to lower the size (have more chunks) to get
* more frequent status updates. 128 KiB per request seem suitable.
* (Worst case of "slow" transfers -> one update every two seconds.)
*/
size_t max_chunk = progress ? 128 * 1024 : AW_USB_MAX_BULK_SEND;
size_t chunk;
int rc, sent;
while (length > 0) {
chunk = length < max_chunk ? length : max_chunk;
rc = libusb_bulk_transfer(usb, ep, (void *)data, chunk,
&sent, USB_TIMEOUT);
if (rc != 0)
usb_error(rc, "usb_bulk_send()", 2);
length -= sent;
data += sent;
if (progress)
progress_update(sent); /* notification after each chunk */
}
}
void usb_bulk_recv(libusb_device_handle *usb, int ep, void *data, int length)
{
int rc, recv;
while (length > 0) {
rc = libusb_bulk_transfer(usb, ep, data, length,
&recv, USB_TIMEOUT);
if (rc != 0)
usb_error(rc, "usb_bulk_recv()", 2);
length -= recv;
data += recv;
}
}
struct aw_usb_request {
char signature[8];
uint32_t length;
uint32_t unknown1; /* 0x0c000000 */
uint16_t request;
uint32_t length2; /* Same as length */
char pad[10];
} __attribute__((packed));
#define AW_USB_READ 0x11
#define AW_USB_WRITE 0x12
struct aw_fel_request {
uint32_t request;
uint32_t address;
uint32_t length;
uint32_t pad;
};
/* FEL request types */
#define AW_FEL_VERSION 0x001
#define AW_FEL_1_WRITE 0x101
#define AW_FEL_1_EXEC 0x102
#define AW_FEL_1_READ 0x103
static void aw_send_usb_request(feldev_handle *dev, int type, int length)
{
struct aw_usb_request req = {
.signature = "AWUC",
.request = htole16(type),
.length = htole32(length),
.unknown1 = htole32(0x0c000000)
};
req.length2 = req.length;
usb_bulk_send(dev->usb->handle, dev->usb->endpoint_out,
&req, sizeof(req), false);
}
static void aw_read_usb_response(feldev_handle *dev)
{
char buf[13];
usb_bulk_recv(dev->usb->handle, dev->usb->endpoint_in,
buf, sizeof(buf));
assert(strcmp(buf, "AWUS") == 0);
}
static void aw_usb_write(feldev_handle *dev, const void *data, size_t len,
bool progress)
{
aw_send_usb_request(dev, AW_USB_WRITE, len);
usb_bulk_send(dev->usb->handle, dev->usb->endpoint_out,
data, len, progress);
aw_read_usb_response(dev);
}
static void aw_usb_read(feldev_handle *dev, const void *data, size_t len)
{
aw_send_usb_request(dev, AW_USB_READ, len);
usb_bulk_send(dev->usb->handle, dev->usb->endpoint_in,
data, len, false);
aw_read_usb_response(dev);
}
void aw_send_fel_request(feldev_handle *dev, int type,
uint32_t addr, uint32_t length)
{
struct aw_fel_request req = {
.request = htole32(type),
.address = htole32(addr),
.length = htole32(length)
};
aw_usb_write(dev, &req, sizeof(req), false);
}
void aw_read_fel_status(feldev_handle *dev)
{
char buf[8];
aw_usb_read(dev, buf, sizeof(buf));
}
/* AW_FEL_VERSION request */
static void aw_fel_get_version(feldev_handle *dev, struct aw_fel_version *buf)
{
aw_send_fel_request(dev, AW_FEL_VERSION, 0, 0);
aw_usb_read(dev, buf, sizeof(*buf));
aw_read_fel_status(dev);
buf->soc_id = (le32toh(buf->soc_id) >> 8) & 0xFFFF;
buf->unknown_0a = le32toh(buf->unknown_0a);
buf->protocol = le32toh(buf->protocol);
buf->scratchpad = le16toh(buf->scratchpad);
buf->pad[0] = le32toh(buf->pad[0]);
buf->pad[1] = le32toh(buf->pad[1]);
}
/* AW_FEL_1_READ request */
void aw_fel_read(feldev_handle *dev, uint32_t offset, void *buf, size_t len)
{
aw_send_fel_request(dev, AW_FEL_1_READ, offset, len);
aw_usb_read(dev, buf, len);
aw_read_fel_status(dev);
}
/* AW_FEL_1_WRITE request */
void aw_fel_write(feldev_handle *dev, void *buf, uint32_t offset, size_t len)
{
aw_send_fel_request(dev, AW_FEL_1_WRITE, offset, len);
aw_usb_write(dev, buf, len, false);
aw_read_fel_status(dev);
}
/* AW_FEL_1_EXEC request */
void aw_fel_execute(feldev_handle *dev, uint32_t offset)
{
aw_send_fel_request(dev, AW_FEL_1_EXEC, offset, 0);
aw_read_fel_status(dev);
}
/*
* This function is a higher-level wrapper for the FEL write functionality.
* Unlike aw_fel_write() above - which is reserved for internal use - this
* routine optionally allows progress callbacks.
*/
void aw_fel_write_buffer(feldev_handle *dev, void *buf, uint32_t offset,
size_t len, bool progress)
{
aw_send_fel_request(dev, AW_FEL_1_WRITE, offset, len);
aw_usb_write(dev, buf, len, progress);
aw_read_fel_status(dev);
}
/*
* We don't want the scratch code/buffer to exceed a maximum size of 0x400 bytes
* (256 32-bit words) on readl_n/writel_n transfers. To guarantee this, we have
* to account for the amount of space the ARM code uses.
*/
#define LCODE_ARM_WORDS 12 /* word count of the [read/write]l_n scratch code */
#define LCODE_ARM_SIZE (LCODE_ARM_WORDS << 2) /* code size in bytes */
#define LCODE_MAX_TOTAL 0x100 /* max. words in buffer */
#define LCODE_MAX_WORDS (LCODE_MAX_TOTAL - LCODE_ARM_WORDS) /* data words */
/* multiple "readl" from sequential addresses to a destination buffer */
static void aw_fel_readl_n(feldev_handle *dev, uint32_t addr,
uint32_t *dst, size_t count)
{
if (count == 0) return;
if (count > LCODE_MAX_WORDS) {
fprintf(stderr,
"ERROR: Max. word count exceeded, truncating aw_fel_readl_n() transfer\n");
count = LCODE_MAX_WORDS;
}
assert(LCODE_MAX_WORDS < 256); /* protect against corruption of ARM code */
uint32_t arm_code[] = {
htole32(0xe59f0020), /* ldr r0, [pc, #32] ; ldr r0,[read_addr] */
htole32(0xe28f1024), /* add r1, pc, #36 ; adr r1, read_data */
htole32(0xe59f201c), /* ldr r2, [pc, #28] ; ldr r2,[read_count] */
htole32(0xe3520000 + LCODE_MAX_WORDS), /* cmp r2, #LCODE_MAX_WORDS */
htole32(0xc3a02000 + LCODE_MAX_WORDS), /* movgt r2, #LCODE_MAX_WORDS */
/* read_loop: */
htole32(0xe2522001), /* subs r2, r2, #1 ; r2 -= 1 */
htole32(0x412fff1e), /* bxmi lr ; return if (r2 < 0) */
htole32(0xe4903004), /* ldr r3, [r0], #4 ; load and post-inc */
htole32(0xe4813004), /* str r3, [r1], #4 ; store and post-inc */
htole32(0xeafffffa), /* b read_loop */
htole32(addr), /* read_addr */
htole32(count) /* read_count */
/* read_data (buffer) follows, i.e. values go here */
};
assert(sizeof(arm_code) == LCODE_ARM_SIZE);
/* scratch buffer setup: transfers ARM code, including addr and count */
aw_fel_write(dev, arm_code, dev->soc_info->scratch_addr, sizeof(arm_code));
/* execute code, read back the result */
aw_fel_execute(dev, dev->soc_info->scratch_addr);
uint32_t buffer[count];
aw_fel_read(dev, dev->soc_info->scratch_addr + LCODE_ARM_SIZE,
buffer, sizeof(buffer));
/* extract values to destination buffer */
uint32_t *val = buffer;
while (count-- > 0)
*dst++ = le32toh(*val++);
}
/*
* aw_fel_readl_n() wrapper that can handle large transfers. If necessary,
* those will be done in separate 'chunks' of no more than LCODE_MAX_WORDS.
*/
void fel_readl_n(feldev_handle *dev, uint32_t addr, uint32_t *dst, size_t count)
{
while (count > 0) {
size_t n = count > LCODE_MAX_WORDS ? LCODE_MAX_WORDS : count;
aw_fel_readl_n(dev, addr, dst, n);
addr += n * sizeof(uint32_t);
dst += n;
count -= n;
}
}
/* multiple "writel" from a source buffer to sequential addresses */
static void aw_fel_writel_n(feldev_handle *dev, uint32_t addr,
uint32_t *src, size_t count)
{
if (count == 0) return;
if (count > LCODE_MAX_WORDS) {
fprintf(stderr,
"ERROR: Max. word count exceeded, truncating aw_fel_writel_n() transfer\n");
count = LCODE_MAX_WORDS;
}
assert(LCODE_MAX_WORDS < 256); /* protect against corruption of ARM code */
/*
* We need a fixed array size to allow for (partial) initialization,
* so we'll claim the maximum total number of words (0x100) here.
*/
uint32_t arm_code[LCODE_MAX_TOTAL] = {
htole32(0xe59f0020), /* ldr r0, [pc, #32] ; ldr r0,[write_addr] */
htole32(0xe28f1024), /* add r1, pc, #36 ; adr r1, write_data */
htole32(0xe59f201c), /* ldr r2, [pc, #28] ; ldr r2,[write_count]*/
htole32(0xe3520000 + LCODE_MAX_WORDS), /* cmp r2, #LCODE_MAX_WORDS */
htole32(0xc3a02000 + LCODE_MAX_WORDS), /* movgt r2, #LCODE_MAX_WORDS */
/* write_loop: */
htole32(0xe2522001), /* subs r2, r2, #1 ; r2 -= 1 */
htole32(0x412fff1e), /* bxmi lr ; return if (r2 < 0) */
htole32(0xe4913004), /* ldr r3, [r1], #4 ; load and post-inc */
htole32(0xe4803004), /* str r3, [r0], #4 ; store and post-inc */
htole32(0xeafffffa), /* b write_loop */
htole32(addr), /* write_addr */
htole32(count) /* write_count */
/* write_data (buffer) follows, i.e. values taken from here */
};
/* copy values from source buffer */
size_t i;
for (i = 0; i < count; i++)
arm_code[LCODE_ARM_WORDS + i] = htole32(*src++);
/* scratch buffer setup: transfers ARM code and data */
aw_fel_write(dev, arm_code, dev->soc_info->scratch_addr,
(LCODE_ARM_WORDS + count) * sizeof(uint32_t));
/* execute, and we're done */
aw_fel_execute(dev, dev->soc_info->scratch_addr);
}
/*
* aw_fel_writel_n() wrapper that can handle large transfers. If necessary,
* those will be done in separate 'chunks' of no more than LCODE_MAX_WORDS.
*/
void fel_writel_n(feldev_handle *dev, uint32_t addr, uint32_t *src, size_t count)
{
while (count > 0) {
size_t n = count > LCODE_MAX_WORDS ? LCODE_MAX_WORDS : count;
aw_fel_writel_n(dev, addr, src, n);
addr += n * sizeof(uint32_t);
src += n;
count -= n;
}
}
/*
* move (arbitrary byte count) data between addresses within SoC memory
*
* These functions try to copy as many bytes as possible using 32-bit word
* transfers, and handle any unaligned bytes ('head' and 'tail') separately.
*
* This is useful for the same reasons that "readl"/"writel" were introduced:
* Byte-oriented transfers ("string" copy) might not give the expected results
* when accessing hardware registers, like e.g. the (G)PIO config/state.
*
* We have two different low-level functions, where the copy operation moves
* upwards or downwards respectively. This allows a non-destructive "memmove"
* wrapper to select the suitable one in case of memory overlap.
*/
static void fel_memcpy_up(feldev_handle *dev,
uint32_t dst_addr, uint32_t src_addr, size_t size)
{
if (size == 0) return;
/*
* copy "upwards", increasing destination and source addresses
*/
uint32_t arm_code[] = {
htole32(0xe59f0054), /* ldr r0, [pc, #84] ; ldr r0, [dst_addr] */
htole32(0xe59f1054), /* ldr r1, [pc, #84] ; ldr r1, [src_addr] */
htole32(0xe59f2054), /* ldr r2, [pc, #84] ; ldr r2, [size] */
htole32(0xe0413000), /* sub r3, r1, r0 ; r3 = r1 - r0 */
htole32(0xe3130003), /* tst r3, #3 ; test lower bits */
htole32(0x1a00000b), /* bne copyup_tail ; unaligned copying */
/* copyup_head: */
htole32(0xe3110003), /* tst r1, #3 ; word-aligned? */
htole32(0x0a000004), /* beq copyup_loop */
htole32(0xe4d13001), /* ldrb r3, [r1], #1 ; load and post-inc */
htole32(0xe4c03001), /* strb r3, [r0], #1 ; store and post-inc */
htole32(0xe2522001), /* subs r2, r2, #1 ; r2 -= 1 */
htole32(0x5afffff9), /* bpl copyup_head ; while (r2 >= 0) */
htole32(0xe12fff1e), /* bx lr ; early return */
/* copyup_loop: */
htole32(0xe2522004), /* subs r2, r2, #4 ; r2 -= 4 */
htole32(0x54913004), /* ldrpl r3, [r1], #4 ; load and post-inc */
htole32(0x54803004), /* strpl r3, [r0], #4 ; store and post-inc */
htole32(0x5afffffb), /* bpl copyup_loop ; while (r2 >= 0) */
htole32(0xe2822004), /* add r2, r2, #4 ; remaining bytes */
/* copyup_tail: */
htole32(0xe2522001), /* subs r2, r2, #1 ; r2 -= 1 */
htole32(0x412fff1e), /* bxmi lr ; return if (r2 < 0) */
htole32(0xe4d13001), /* ldrb r3, [r1], #1 ; load and post-inc */
htole32(0xe4c03001), /* strb r3, [r0], #1 ; store and post-inc */
htole32(0xeafffffa), /* b copyup_tail */
htole32(dst_addr), /* destination address */
htole32(src_addr), /* source address */
htole32(size), /* size (= byte count) */
};
aw_fel_write(dev, arm_code, dev->soc_info->scratch_addr, sizeof(arm_code));
aw_fel_execute(dev, dev->soc_info->scratch_addr);
}
static void fel_memcpy_down(feldev_handle *dev,
uint32_t dst_addr, uint32_t src_addr, size_t size)
{
if (size == 0) return;
/*
* This ARM code makes use of decreasing values in r2
* for memory indexing relative to the base addresses in r0 and r1.
*/
uint32_t arm_code[] = {
htole32(0xe59f0058), /* ldr r0, [pc, #88] ; ldr r0, [dst_addr] */
htole32(0xe59f1058), /* ldr r1, [pc, #88] ; ldr r1, [src_addr] */
htole32(0xe59f2058), /* ldr r2, [pc, #88] ; ldr r2, [size] */
htole32(0xe0403001), /* sub r3, r0, r1 ; r3 = r0 - r1 */
htole32(0xe3130003), /* tst r3, #3 ; test lower bits */
htole32(0x1a00000c), /* bne copydn_tail ; unaligned copying */
/* copydn_head: */
htole32(0xe0813002), /* add r3, r1, r2 ; r3 = r1 + r2 */
htole32(0xe3130003), /* tst r3, #3 ; word-aligned? */
htole32(0x0a000004), /* beq copydn_loop */
htole32(0xe2522001), /* subs r2, r2, #1 ; r2 -= 1 */
htole32(0x412fff1e), /* bxmi lr ; early return */
htole32(0xe7d13002), /* ldrb r3, [r1, r2] ; load byte */
htole32(0xe7c03002), /* strb r3, [r0, r2] ; store byte */
htole32(0xeafffff7), /* b copydn_head */
/* copydn_loop: */
htole32(0xe2522004), /* subs r2, r2, #4 ; r2 -= 4 */
htole32(0x57913002), /* ldrpl r3, [r1, r2] ; load word */
htole32(0x57803002), /* strpl r3, [r0, r2] ; store word */
htole32(0x5afffffb), /* bpl copydn_loop ; while (r2 >= 0) */
htole32(0xe2822004), /* add r2, r2, #4 ; remaining bytes */
/* copydn_tail: */
htole32(0xe2522001), /* subs r2, r2, #1 ; r2 -= 1 */
htole32(0x412fff1e), /* bxmi lr ; return if (r2 < 0) */
htole32(0xe7d13002), /* ldrb r3, [r1, r2] ; load byte */
htole32(0xe7c03002), /* strb r3, [r0, r2] ; store byte */
htole32(0xeafffffa), /* b copydn_tail */
htole32(dst_addr), /* destination address */
htole32(src_addr), /* source address */
htole32(size), /* size (= byte count) */
};
aw_fel_write(dev, arm_code, dev->soc_info->scratch_addr, sizeof(arm_code));
aw_fel_execute(dev, dev->soc_info->scratch_addr);
}
void fel_memmove(feldev_handle *dev,
uint32_t dst_addr, uint32_t src_addr, size_t size)
{
/*
* To ensure non-destructive operation, we need to select "downwards"
* copying if the destination overlaps the source region.
*/
if (dst_addr >= src_addr && dst_addr < (src_addr + size))
fel_memcpy_down(dev, dst_addr, src_addr, size);
else
fel_memcpy_up(dev, dst_addr, src_addr, size);
}
/*
* Bitwise manipulation of a 32-bit word at given address, via bit masks that
* specify which bits to clear and which to set.
*/
void fel_clrsetbits_le32(feldev_handle *dev,
uint32_t addr, uint32_t clrbits, uint32_t setbits)
{
uint32_t arm_code[] = {
htole32(0xe59f0018), /* 0: ldr r0, [addr] */
htole32(0xe5901000), /* 4: ldr r1, [r0] */
htole32(0xe59f2014), /* 8: ldr r2, [clrbits] */
htole32(0xe1c11002), /* c: bic r1, r1, r2 */
htole32(0xe59f2010), /* 10: ldr r2, [setbits] */
htole32(0xe1811002), /* 14: orr r1, r1, r2 */
htole32(0xe5801000), /* 18: str r1, [r0] */
htole32(0xe12fff1e), /* 1c: bx lr */
htole32(addr), /* address */
htole32(clrbits), /* bits to clear */
htole32(setbits), /* bits to set */
};
aw_fel_write(dev, arm_code, dev->soc_info->scratch_addr, sizeof(arm_code));
aw_fel_execute(dev, dev->soc_info->scratch_addr);
}
/*
* Memory access to the SID (root) keys proved to be unreliable for certain
* SoCs. This function uses an alternative, register-based approach to retrieve
* the values.
*/
static void fel_get_sid_registers(feldev_handle *dev, uint32_t *result)
{
uint32_t arm_code[] = {
htole32(0xe59f0040), /* 0: ldr r0, [pc, #64] */
htole32(0xe3a01000), /* 4: mov r1, #0 */
htole32(0xe28f303c), /* 8: add r3, pc, #60 */
/* <sid_read_loop>: */
htole32(0xe1a02801), /* c: lsl r2, r1, #16 */
htole32(0xe3822b2b), /* 10: orr r2, r2, #44032 */
htole32(0xe3822002), /* 14: orr r2, r2, #2 */
htole32(0xe5802040), /* 18: str r2, [r0, #64] */
/* <sid_read_wait>: */
htole32(0xe5902040), /* 1c: ldr r2, [r0, #64] */
htole32(0xe3120002), /* 20: tst r2, #2 */
htole32(0x1afffffc), /* 24: bne 1c <sid_read_wait> */
htole32(0xe5902060), /* 28: ldr r2, [r0, #96] */
htole32(0xe7832001), /* 2c: str r2, [r3, r1] */
htole32(0xe2811004), /* 30: add r1, r1, #4 */
htole32(0xe3510010), /* 34: cmp r1, #16 */
htole32(0x3afffff3), /* 38: bcc c <sid_read_loop> */
htole32(0xe3a02000), /* 3c: mov r2, #0 */
htole32(0xe5802040), /* 40: str r2, [r0, #64] */
htole32(0xe12fff1e), /* 44: bx lr */
htole32(dev->soc_info->sid_base), /* SID base addr */
/* retrieved SID values go here */
};
/* write and execute code */
aw_fel_write(dev, arm_code, dev->soc_info->scratch_addr, sizeof(arm_code));
aw_fel_execute(dev, dev->soc_info->scratch_addr);
/* read back the result */
aw_fel_read(dev, dev->soc_info->scratch_addr + sizeof(arm_code),
result, 4 * sizeof(uint32_t));
for (unsigned i = 0; i < 4; i++)
result[i] = le32toh(result[i]);
}
/* Read the SID "root" key (128 bits). You need to pass the device handle,
* a pointer to a result array capable of receiving at least four 32-bit words,
* and a flag specifying if the register-access workaround should be enforced.
* Return value indicates whether the result is expected to be usable:
* The function will return `false` (and zero the result) if it cannot access
* the SID registers.
*/
bool fel_get_sid_root_key(feldev_handle *dev, uint32_t *result,
bool force_workaround)
{
if (!dev->soc_info->sid_base) {
/* SID unavailable */
for (unsigned i = 0; i < 4; i++) result[i] = 0;
return false;
}
if (dev->soc_info->sid_fix || force_workaround)
/* Work around SID issues by using ARM thunk code */
fel_get_sid_registers(dev, result);
else
/* Read SID directly from memory */
fel_readl_n(dev, dev->soc_info->sid_base
+ dev->soc_info->sid_offset, result, 4);
return true;
}
/* general functions, "FEL device" management */
static int feldev_get_endpoint(feldev_handle *dev)
{
struct libusb_device *usb = libusb_get_device(dev->usb->handle);
struct libusb_config_descriptor *config;
int if_idx, set_idx, ep_idx, ret;
const struct libusb_interface *iface;
const struct libusb_interface_descriptor *setting;
const struct libusb_endpoint_descriptor *ep;
ret = libusb_get_active_config_descriptor(usb, &config);
if (ret)
return ret;
for (if_idx = 0; if_idx < config->bNumInterfaces; if_idx++) {
iface = config->interface + if_idx;
for (set_idx = 0; set_idx < iface->num_altsetting; set_idx++) {
setting = iface->altsetting + set_idx;
for (ep_idx = 0; ep_idx < setting->bNumEndpoints; ep_idx++) {
ep = setting->endpoint + ep_idx;
/* Test for bulk transfer endpoint */
if ((ep->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK)
!= LIBUSB_TRANSFER_TYPE_BULK)
continue;
if ((ep->bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK)
== LIBUSB_ENDPOINT_IN)
dev->usb->endpoint_in = ep->bEndpointAddress;
else
dev->usb->endpoint_out = ep->bEndpointAddress;
}
}
}
libusb_free_config_descriptor(config);
return LIBUSB_SUCCESS;
}
/* claim USB interface associated with the libusb handle for a FEL device */
void feldev_claim(feldev_handle *dev)
{
int rc = libusb_claim_interface(dev->usb->handle, 0);
#if defined(__linux__)
if (rc != LIBUSB_SUCCESS) {
libusb_detach_kernel_driver(dev->usb->handle, 0);
dev->usb->iface_detached = true;
rc = libusb_claim_interface(dev->usb->handle, 0);
}
#endif
if (rc)
usb_error(rc, "libusb_claim_interface()", 1);
rc = feldev_get_endpoint(dev);
if (rc)
usb_error(rc, "FAILED to get FEL mode endpoint addresses!", 1);
}
/* release USB interface associated with the libusb handle for a FEL device */
void feldev_release(feldev_handle *dev)
{
libusb_release_interface(dev->usb->handle, 0);
#if defined(__linux__)
if (dev->usb->iface_detached)
libusb_attach_kernel_driver(dev->usb->handle, 0);
#endif
}
/* open handle to desired FEL device */
feldev_handle *feldev_open(int busnum, int devnum,
uint16_t vendor_id, uint16_t product_id)
{
if (!fel_lib_initialized) /* if not already done: auto-initialize */
feldev_init();
feldev_handle *result = calloc(1, sizeof(feldev_handle));
if (!result) {
fprintf(stderr, "FAILED to allocate feldev_handle memory.\n");
exit(1);
}
result->usb = calloc(1, sizeof(felusb_handle));
if (!result->usb) {
fprintf(stderr, "FAILED to allocate felusb_handle memory.\n");
free(result);
exit(1);
}
if (busnum < 0 || devnum < 0) {
/* With the default values (busnum -1, devnum -1) we don't care
* for a specific USB device; so let libusb open the first
* device that matches VID/PID.
*/
result->usb->handle = libusb_open_device_with_vid_pid(NULL, vendor_id, product_id);
if (!result->usb->handle) {
switch (errno) {
case EACCES:
fprintf(stderr, "ERROR: You don't have permission to access Allwinner USB FEL device\n");
break;
default:
fprintf(stderr, "ERROR: Allwinner USB FEL device not found!\n");
break;
}
exit(1);
}
} else {
/* look for specific bus and device number */
bool found = false;
ssize_t rc, i;
libusb_device **list;
rc = libusb_get_device_list(NULL, &list);
if (rc < 0)
usb_error(rc, "libusb_get_device_list()", 1);
for (i = 0; i < rc; i++) {
if (libusb_get_bus_number(list[i]) == busnum
&& libusb_get_device_address(list[i]) == devnum) {
found = true; /* bus:devnum matched */
struct libusb_device_descriptor desc;
libusb_get_device_descriptor(list[i], &desc);
if (desc.idVendor != vendor_id
|| desc.idProduct != product_id) {
fprintf(stderr, "ERROR: Bus %03d Device %03d not a FEL device "
"(expected %04x:%04x, got %04x:%04x)\n", busnum, devnum,
vendor_id, product_id, desc.idVendor, desc.idProduct);
exit(1);
}
/* open handle to this specific device (incrementing its refcount) */
rc = libusb_open(list[i], &result->usb->handle);
if (rc != 0)
usb_error(rc, "libusb_open()", 1);
break;
}
}
libusb_free_device_list(list, true);
if (!found) {
fprintf(stderr, "ERROR: Bus %03d Device %03d not found in libusb device list\n",
busnum, devnum);
exit(1);
}
}
feldev_claim(result); /* claim interface, detect USB endpoints */
/* retrieve BROM version and SoC information */
aw_fel_get_version(result, &result->soc_version);
get_soc_name_from_id(result->soc_name, result->soc_version.soc_id);
result->soc_info = get_soc_info_from_version(&result->soc_version);
return result;
}
/* close FEL device (optional, dev may be NULL) */
void feldev_close(feldev_handle *dev)
{
if (dev) {
if (dev->usb->handle) {
feldev_release(dev);
libusb_close(dev->usb->handle);
}
free(dev->usb); /* release memory allocated for felusb_handle */
}
}
void feldev_init(void)
{
int rc = libusb_init(NULL);
if (rc != 0)
usb_error(rc, "libusb_init()", 1);
fel_lib_initialized = true;
}
void feldev_done(feldev_handle *dev)
{
feldev_close(dev);
free(dev);
if (fel_lib_initialized) libusb_exit(NULL);
}
/*
* Enumerate (all) FEL devices. Allocates a list (array of feldev_list_entry)
* and optionally returns the number of elements via "count". You may
* alternatively detect the end of the list by checking the entry's soc_version
* for a zero ID.
* It's your responsibility to call free() on the result later.
*/
feldev_list_entry *list_fel_devices(size_t *count)
{
feldev_list_entry *list, *entry;
ssize_t rc, i;
libusb_context *ctx;
libusb_device **usb;
struct libusb_device_descriptor desc;
feldev_handle *dev;
size_t devices = 0;
libusb_init(&ctx);
rc = libusb_get_device_list(ctx, &usb);
if (rc < 0)
usb_error(rc, "libusb_get_device_list()", 1);
/*
* Size our array to hold entries for every USB device,
* plus an empty one at the end (for list termination).
*/
list = calloc(rc + 1, sizeof(feldev_list_entry));
if (!list) {
fprintf(stderr, "list_fel_devices() FAILED to allocate list memory.\n");
exit(1);
}
for (i = 0; i < rc; i++) {
libusb_get_device_descriptor(usb[i], &desc);
if (desc.idVendor != AW_USB_VENDOR_ID
|| desc.idProduct != AW_USB_PRODUCT_ID)
continue; /* not an Allwinner FEL device */
entry = list + devices; /* pointer to current feldev_list_entry */
devices += 1;
entry->busnum = libusb_get_bus_number(usb[i]);
entry->devnum = libusb_get_device_address(usb[i]);
dev = feldev_open(entry->busnum, entry->devnum,
AW_USB_VENDOR_ID, AW_USB_PRODUCT_ID);
/* copy relevant fields */
entry->soc_version = dev->soc_version;
entry->soc_info = dev->soc_info;
strncpy(entry->soc_name, dev->soc_name, sizeof(soc_name_t));
/* retrieve SID bits */
fel_get_sid_root_key(dev, entry->SID, false);
feldev_close(dev);
free(dev);
}
libusb_free_device_list(usb, true);
libusb_exit(ctx);
if (count) *count = devices;
return list;
}