-
Notifications
You must be signed in to change notification settings - Fork 187
/
Copy pathTwoPole.h
153 lines (123 loc) · 5.36 KB
/
TwoPole.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#ifndef STK_TWOPOLE_H
#define STK_TWOPOLE_H
#include "Filter.h"
namespace stk {
/***************************************************/
/*! \class TwoPole
\brief STK two-pole filter class.
This class implements a two-pole digital filter. A method is
provided for creating a resonance in the frequency response while
maintaining a nearly constant filter gain.
by Perry R. Cook and Gary P. Scavone, 1995--2023.
*/
/***************************************************/
class TwoPole : public Filter
{
public:
//! Default constructor creates a second-order pass-through filter.
TwoPole( void );
//! Class destructor.
~TwoPole();
//! A function to enable/disable the automatic updating of class data when the STK sample rate changes.
void ignoreSampleRateChange( bool ignore = true ) { ignoreSampleRateChange_ = ignore; };
//! Set the b[0] coefficient value.
void setB0( StkFloat b0 ) { b_[0] = b0; };
//! Set the a[1] coefficient value.
void setA1( StkFloat a1 ) { a_[1] = a1; };
//! Set the a[2] coefficient value.
void setA2( StkFloat a2 ) { a_[2] = a2; };
//! Set all filter coefficients.
void setCoefficients( StkFloat b0, StkFloat a1, StkFloat a2, bool clearState = false );
//! Sets the filter coefficients for a resonance at \e frequency (in Hz).
/*!
This method determines the filter coefficients corresponding to
two complex-conjugate poles with the given \e frequency (in Hz)
and \e radius from the z-plane origin. If \e normalize is true,
the coefficients are then normalized to produce unity gain at \e
frequency (the actual maximum filter gain tends to be slightly
greater than unity when \e radius is not close to one). The
resulting filter frequency response has a resonance at the given
\e frequency. The closer the poles are to the unit-circle (\e
radius close to one), the narrower the resulting resonance width.
An unstable filter will result for \e radius >= 1.0. The
\e frequency value should be between zero and half the sample rate.
For a better resonance filter, use a BiQuad filter. \sa BiQuad
filter class
*/
void setResonance(StkFloat frequency, StkFloat radius, bool normalize = false);
//! Return the last computed output value.
StkFloat lastOut( void ) const { return lastFrame_[0]; };
//! Input one sample to the filter and return one output.
StkFloat tick( StkFloat input );
//! Take a channel of the StkFrames object as inputs to the filter and replace with corresponding outputs.
/*!
The StkFrames argument reference is returned. The \c channel
argument must be less than the number of channels in the
StkFrames argument (the first channel is specified by 0).
However, range checking is only performed if _STK_DEBUG_ is
defined during compilation, in which case an out-of-range value
will trigger an StkError exception.
*/
StkFrames& tick( StkFrames& frames, unsigned int channel = 0 );
//! Take a channel of the \c iFrames object as inputs to the filter and write outputs to the \c oFrames object.
/*!
The \c iFrames object reference is returned. Each channel
argument must be less than the number of channels in the
corresponding StkFrames argument (the first channel is specified
by 0). However, range checking is only performed if _STK_DEBUG_
is defined during compilation, in which case an out-of-range value
will trigger an StkError exception.
*/
StkFrames& tick( StkFrames& iFrames, StkFrames &oFrames, unsigned int iChannel = 0, unsigned int oChannel = 0 );
protected:
virtual void sampleRateChanged( StkFloat newRate, StkFloat oldRate );
};
inline StkFloat TwoPole :: tick( StkFloat input )
{
inputs_[0] = gain_ * input;
lastFrame_[0] = b_[0] * inputs_[0] - a_[1] * outputs_[1] - a_[2] * outputs_[2];
outputs_[2] = outputs_[1];
outputs_[1] = lastFrame_[0];
return lastFrame_[0];
}
inline StkFrames& TwoPole :: tick( StkFrames& frames, unsigned int channel )
{
#if defined(_STK_DEBUG_)
if ( channel >= frames.channels() ) {
oStream_ << "TwoPole::tick(): channel and StkFrames arguments are incompatible!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
StkFloat *samples = &frames[channel];
unsigned int hop = frames.channels();
for ( unsigned int i=0; i<frames.frames(); i++, samples += hop ) {
inputs_[0] = gain_ * *samples;
*samples = b_[0] * inputs_[0] - a_[1] * outputs_[1] - a_[2] * outputs_[2];
outputs_[2] = outputs_[1];
outputs_[1] = *samples;
}
lastFrame_[0] = outputs_[1];
return frames;
}
inline StkFrames& TwoPole :: tick( StkFrames& iFrames, StkFrames& oFrames, unsigned int iChannel, unsigned int oChannel )
{
#if defined(_STK_DEBUG_)
if ( iChannel >= iFrames.channels() || oChannel >= oFrames.channels() ) {
oStream_ << "TwoPole::tick(): channel and StkFrames arguments are incompatible!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
StkFloat *iSamples = &iFrames[iChannel];
StkFloat *oSamples = &oFrames[oChannel];
unsigned int iHop = iFrames.channels(), oHop = oFrames.channels();
for ( unsigned int i=0; i<iFrames.frames(); i++, iSamples += iHop, oSamples += oHop ) {
inputs_[0] = gain_ * *iSamples;
*oSamples = b_[0] * inputs_[0] - a_[1] * outputs_[1] - a_[2] * outputs_[2];
outputs_[2] = outputs_[1];
outputs_[1] = *oSamples;
}
lastFrame_[0] = outputs_[1];
return iFrames;
}
} // stk namespace
#endif