-
Notifications
You must be signed in to change notification settings - Fork 187
/
Copy pathShakers.h
332 lines (287 loc) · 9.58 KB
/
Shakers.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#ifndef STK_SHAKERS_H
#define STK_SHAKERS_H
#include "Instrmnt.h"
#include <cmath>
#include <stdlib.h>
namespace stk {
/***************************************************/
/*! \class Shakers
\brief PhISEM and PhOLIES class.
PhISEM (Physically Informed Stochastic Event Modeling) is an
algorithmic approach for simulating collisions of multiple
independent sound producing objects. This class is a meta-model
that can simulate a Maraca, Sekere, Cabasa, Bamboo Wind Chimes,
Water Drops, Tambourine, Sleighbells, and a Guiro.
PhOLIES (Physically-Oriented Library of Imitated Environmental
Sounds) is a similar approach for the synthesis of environmental
sounds. This class implements simulations of breaking sticks,
crunchy snow (or not), a wrench, sandpaper, and more.
Control Change Numbers:
- Shake Energy = 2
- System Decay = 4
- Number Of Objects = 11
- Resonance Frequency = 1
- Shake Energy = 128
- Instrument Selection = 1071
- Maraca = 0
- Cabasa = 1
- Sekere = 2
- Tambourine = 3
- Sleigh Bells = 4
- Bamboo Chimes = 5
- Sand Paper = 6
- Coke Can = 7
- Sticks = 8
- Crunch = 9
- Big Rocks = 10
- Little Rocks = 11
- Next Mug = 12
- Penny + Mug = 13
- Nickle + Mug = 14
- Dime + Mug = 15
- Quarter + Mug = 16
- Franc + Mug = 17
- Peso + Mug = 18
- Guiro = 19
- Wrench = 20
- Water Drops = 21
- Tuned Bamboo Chimes = 22
by Perry R. Cook with updates by Gary Scavone, 1995--2023.
*/
/***************************************************/
class Shakers : public Instrmnt
{
public:
//! Class constructor taking instrument type argument.
Shakers( int type = 0 );
//! Start a note with the given instrument and amplitude.
/*!
Use the instrument numbers above, converted to frequency values
as if MIDI note numbers, to select a particular instrument.
*/
void noteOn( StkFloat instrument, StkFloat amplitude );
//! Stop a note with the given amplitude (speed of decay).
void noteOff( StkFloat amplitude );
//! Perform the control change specified by \e number and \e value (0.0 - 128.0).
void controlChange( int number, StkFloat value );
//! Compute and return one output sample.
StkFloat tick( unsigned int channel = 0 );
//! Fill a channel of the StkFrames object with computed outputs.
/*!
The \c channel argument must be less than the number of
channels in the StkFrames argument (the first channel is specified
by 0). However, range checking is only performed if _STK_DEBUG_
is defined during compilation, in which case an out-of-range value
will trigger an StkError exception.
*/
StkFrames& tick( StkFrames& frames, unsigned int channel = 0 );
struct BiQuad {
StkFloat gain;
StkFloat b[3];
StkFloat a[3]; // a0 term assumed equal to 1.0
StkFloat inputs[3];
StkFloat outputs[3];
// Default constructor.
BiQuad()
{
gain = 0.0;
for ( int i=0; i<3; i++ ) {
b[i] = 0.0;
a[i] = 0.0;
inputs[i] = 0.0;
outputs[i] = 0.0;
}
}
};
protected:
void setType( int type );
void setResonance( BiQuad &filter, StkFloat frequency, StkFloat radius );
StkFloat tickResonance( BiQuad &filter, StkFloat input );
void setEqualization( StkFloat b0, StkFloat b1, StkFloat b2 );
StkFloat tickEqualize( StkFloat input );
int randomInt( int max );
StkFloat randomFloat( StkFloat max = 1.0 );
StkFloat noise( void );
void waterDrop( void );
int shakerType_;
unsigned int nResonances_;
StkFloat shakeEnergy_;
StkFloat soundDecay_;
StkFloat systemDecay_;
StkFloat nObjects_;
StkFloat sndLevel_;
StkFloat baseGain_;
StkFloat currentGain_;
StkFloat baseDecay_;
StkFloat baseObjects_;
StkFloat decayScale_;
BiQuad equalizer_;
StkFloat ratchetCount_;
StkFloat ratchetDelta_;
StkFloat baseRatchetDelta_;
int lastRatchetValue_;
std::vector< BiQuad > filters_;
std::vector< StkFloat > baseFrequencies_;
std::vector< StkFloat > baseRadii_;
std::vector< bool > doVaryFrequency_;
std::vector< StkFloat > tempFrequencies_;
StkFloat varyFactor_;
};
inline void Shakers :: setResonance( BiQuad &filter, StkFloat frequency, StkFloat radius )
{
filter.a[1] = -2.0 * radius * cos( TWO_PI * frequency / Stk::sampleRate());
filter.a[2] = radius * radius;
}
inline StkFloat Shakers :: tickResonance( BiQuad &filter, StkFloat input )
{
filter.outputs[0] = input * filter.gain * currentGain_;
filter.outputs[0] -= filter.a[1] * filter.outputs[1] + filter.a[2] * filter.outputs[2];
filter.outputs[2] = filter.outputs[1];
filter.outputs[1] = filter.outputs[0];
return filter.outputs[0];
}
inline void Shakers :: setEqualization( StkFloat b0, StkFloat b1, StkFloat b2 )
{
equalizer_.b[0] = b0;
equalizer_.b[1] = b1;
equalizer_.b[2] = b2;
}
inline StkFloat Shakers :: tickEqualize( StkFloat input )
{
equalizer_.inputs[0] = input;
equalizer_.outputs[0] = equalizer_.b[0] * equalizer_.inputs[0] + equalizer_.b[1] * equalizer_.inputs[1] + equalizer_.b[2] * equalizer_.inputs[2];
equalizer_.inputs[2] = equalizer_.inputs[1];
equalizer_.inputs[1] = equalizer_.inputs[0];
return equalizer_.outputs[0];
}
inline int Shakers :: randomInt( int max ) // Return random integer between 0 and max-1
{
return (int) ((float)max * rand() / (RAND_MAX + 1.0) );
}
inline StkFloat Shakers :: randomFloat( StkFloat max ) // Return random float between 0.0 and max
{
return (StkFloat) (max * rand() / (RAND_MAX + 1.0) );
}
inline StkFloat Shakers :: noise( void ) // Return random StkFloat float between -1.0 and 1.0
{
return ( (StkFloat) ( 2.0 * rand() / (RAND_MAX + 1.0) ) - 1.0 );
}
const StkFloat MIN_ENERGY = 0.001;
const StkFloat WATER_FREQ_SWEEP = 1.0001;
inline void Shakers :: waterDrop( void )
{
if ( randomInt( 32767 ) < nObjects_) {
sndLevel_ = shakeEnergy_;
unsigned int j = randomInt( 3 );
if ( j == 0 && filters_[0].gain == 0.0 ) { // don't change unless fully decayed
tempFrequencies_[0] = baseFrequencies_[1] * (0.75 + (0.25 * noise()));
filters_[0].gain = fabs( noise() );
}
else if (j == 1 && filters_[1].gain == 0.0) {
tempFrequencies_[1] = baseFrequencies_[1] * (1.0 + (0.25 * noise()));
filters_[1].gain = fabs( noise() );
}
else if ( filters_[2].gain == 0.0 ) {
tempFrequencies_[2] = baseFrequencies_[1] * (1.25 + (0.25 * noise()));
filters_[2].gain = fabs( noise() );
}
}
// Sweep center frequencies.
for ( unsigned int i=0; i<3; i++ ) { // WATER_RESONANCES = 3
filters_[i].gain *= baseRadii_[i];
if ( filters_[i].gain > 0.001 ) {
tempFrequencies_[i] *= WATER_FREQ_SWEEP;
filters_[i].a[1] = -2.0 * baseRadii_[i] * cos( TWO_PI * tempFrequencies_[i] / Stk::sampleRate() );
}
else
filters_[i].gain = 0.0;
}
}
inline StkFloat Shakers :: tick( unsigned int )
{
unsigned int iTube = 0;
StkFloat input = 0.0;
if ( shakerType_ == 19 || shakerType_ == 20 ) {
if ( ratchetCount_ <= 0 ) return lastFrame_[0] = 0.0;
shakeEnergy_ -= ( ratchetDelta_ + ( 0.002 * shakeEnergy_ ) );
if ( shakeEnergy_ < 0.0 ) {
shakeEnergy_ = 1.0;
ratchetCount_--;
}
if ( randomFloat( 1024 ) < nObjects_ )
sndLevel_ += shakeEnergy_ * shakeEnergy_;
// Sound is enveloped noise
input = sndLevel_ * noise() * shakeEnergy_;
}
else {
if ( shakeEnergy_ < MIN_ENERGY ) return lastFrame_[0] = 0.0;
// Exponential system decay
shakeEnergy_ *= systemDecay_;
// Random events
if ( shakerType_ == 21 ) {
waterDrop();
input = sndLevel_;
}
else {
if ( randomFloat( 1024.0 ) < nObjects_ ) {
sndLevel_ += shakeEnergy_;
input = sndLevel_;
// Vary resonance frequencies if specified.
for ( unsigned int i=0; i<nResonances_; i++ ) {
if ( doVaryFrequency_[i] ) {
StkFloat tempRand = baseFrequencies_[i] * ( 1.0 + ( varyFactor_ * noise() ) );
filters_[i].a[1] = -2.0 * baseRadii_[i] * cos( TWO_PI * tempRand / Stk::sampleRate() );
}
}
if ( shakerType_ == 22 ) iTube = randomInt( 7 ); // ANGKLUNG_RESONANCES
}
}
}
// Exponential sound decay
sndLevel_ *= soundDecay_;
// Do resonance filtering
lastFrame_[0] = 0.0;
if ( shakerType_ == 22 ) {
for ( unsigned int i=0; i<nResonances_; i++ ) {
if ( i == iTube )
lastFrame_[0] += tickResonance( filters_[i], input );
else
lastFrame_[0] += tickResonance( filters_[i], 0.0 );
}
}
else {
for ( unsigned int i=0; i<nResonances_; i++ )
lastFrame_[0] += tickResonance( filters_[i], input );
}
// Do final FIR filtering (lowpass or highpass)
lastFrame_[0] = tickEqualize( lastFrame_[0] );
//if ( std::abs(lastFrame_[0]) > 1.0 )
// std::cout << "lastOutput = " << lastFrame_[0] << std::endl;
return lastFrame_[0];
}
inline StkFrames& Shakers :: tick( StkFrames& frames, unsigned int channel )
{
unsigned int nChannels = lastFrame_.channels();
#if defined(_STK_DEBUG_)
if ( channel > frames.channels() - nChannels ) {
oStream_ << "Shakers::tick(): channel and StkFrames arguments are incompatible!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
StkFloat *samples = &frames[channel];
unsigned int j, hop = frames.channels() - nChannels;
if ( nChannels == 1 ) {
for ( unsigned int i=0; i<frames.frames(); i++, samples += hop )
*samples++ = tick();
}
else {
for ( unsigned int i=0; i<frames.frames(); i++, samples += hop ) {
*samples++ = tick();
for ( j=1; j<nChannels; j++ )
*samples++ = lastFrame_[j];
}
}
return frames;
}
} // stk namespace
#endif