forked from DLR-RM/SingleViewReconstruction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_tf_records.py
167 lines (148 loc) · 6.53 KB
/
generate_tf_records.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import h5py
import glob
import tensorflow as tf
import threading
from src.utils.stopwatch import StopWatch
from src.utils.averagenumber import AverageNumber
from src.utils.timeframe import TimeFrame
import numpy as np
import sys
import time
max_threads = 8
goal_folder = os.path.abspath(os.path.join(os.path.dirname(__file__), "data"))
data_folder = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "data"))
if not os.path.exists(data_folder):
raise Exception("The data folder is missing!")
color_normal_mean_path = os.path.join(goal_folder, "color_normal_mean.hdf5")
with h5py.File(color_normal_mean_path, 'r') as data:
normal_mean_img = np.array(data['normal'])
def serialize_tfrecord(color, normal, encoded, lossmap):
feature = {}
feature['color'] = tf.train.Feature(float_list=tf.train.FloatList(value=color.reshape(-1)))
feature['normal'] = tf.train.Feature(float_list=tf.train.FloatList(value=normal.reshape(-1)))
feature['voxel'] = tf.train.Feature(float_list=tf.train.FloatList(value=encoded.reshape(-1)))
feature['lossmap'] = tf.train.Feature(float_list=tf.train.FloatList(value=lossmap.reshape(-1)))
example = tf.train.Example(features=tf.train.Features(feature=feature))
serialized = example.SerializeToString()
return serialized
list_of_done_elements = []
lock_writer_nr = threading.Lock()
lock_done = threading.Lock()
done = False
sem_done = threading.Semaphore(0)
done_counter = 0
total_length = 10
global_write_counter = 0
mean_for_serialize = AverageNumber()
mean_for_write = AverageNumber()
mean_for_read = AverageNumber()
def write_fct():
global sem_done, global_write_counter, done
amount_per_tf_record = 100
options = tf.io.TFRecordOptions(tf.python_io.TFRecordCompressionType.GZIP)
writer = None
while not done:
sem_done.acquire()
try:
lock_done.acquire()
if len(list_of_done_elements) > 0:
c, n, o, l = list_of_done_elements.pop()
else:
lock_done.release()
continue
lock_done.release()
finally:
pass
if global_write_counter % amount_per_tf_record == 0:
if writer is not None:
writer.close()
train_writer_nr = global_write_counter // amount_per_tf_record
writer = tf.io.TFRecordWriter(os.path.join(goal_folder, "train_{}.tfrecord".format(train_writer_nr)), options=options)
print("Start train_{}.tfrecord file".format(train_writer_nr))
sw = StopWatch()
serialized = serialize_tfrecord(c, n, o, l)
mean_for_serialize.add_new(sw.elapsed_time_val)
sw = StopWatch()
writer.write(serialized)
mean_for_write.add_new(sw.elapsed_time_val)
global_write_counter += 1
print("Writer closed")
writer.close()
def read_fct():
global done_counter, list_of_done_elements, lock_done, normal_mean_img, total_length
search_path = os.path.join(data_folder, "*", "voxelgrid", "output_*.hdf5")
paths = glob.glob(search_path)
paths = [path for path in paths if "_loss_avg.hdf5" not in path]
total_length = len(paths)
true_total_length = 0
for encoded_voxel_path in paths:
output_o, loss_o, color_o, normal_o = None, None, None, None
try:
loss_avg_path = encoded_voxel_path.replace('.hdf5', '_loss_avg.hdf5')
blender_result_path = encoded_voxel_path.replace('voxelgrid', 'blenderproc').replace('output_', '')
sw = StopWatch()
if os.path.exists(encoded_voxel_path) and os.path.exists(loss_avg_path) and os.path.exists(blender_result_path):
with h5py.File(encoded_voxel_path, 'r') as data:
if 'encoded_voxelgrid' in data.keys():
output_o = np.array(data["encoded_voxelgrid"]).astype(np.float32)
else:
continue
with h5py.File(loss_avg_path, 'r') as data:
if 'lossmap' in data.keys():
loss_o = np.array(data["lossmap"]).astype(np.float32)
with h5py.File(blender_result_path, 'r') as data:
if "colors" in data.keys() and 'normals' in data.keys():
raw_image = np.array(data['colors'])
amount_of_elements = raw_image.shape[0] * raw_image.shape[1] * raw_image.shape[2]
if np.count_nonzero(raw_image) < amount_of_elements * 0.80:
continue
else:
color_o = raw_image
color_o = color_o[:, :, :3].astype(np.uint8)
normal_o = np.array(data["normals"])
else:
continue
needed = sw.elapsed_time_val
mean_for_read.add_new(needed)
except IOError:
continue
if output_o is not None and loss_o is not None and color_o is not None and normal_o is not None:
normal_o -= normal_mean_img
# make channel first
normal_o = np.transpose(normal_o, [2,0,1])
output_o = np.transpose(output_o, [3,0,1,2])
lock_done.acquire()
list_of_done_elements.append([color_o, normal_o, output_o, loss_o])
done_counter += 1
lock_done.release()
sem_done.release()
true_total_length += 1
total_length = true_total_length
print("Reader done")
threads = []
t = threading.Thread(target=write_fct)
t.daemon = True
threads.append(t)
t.start()
t = threading.Thread(target=read_fct)
t.daemon = True
threads.append(t)
t.start()
update_nr = 0
while not done:
lock_done.acquire()
lenght_now = len(list_of_done_elements)
lock_done.release()
max_time = np.max([mean_for_read.mean, mean_for_write.mean + mean_for_serialize.mean]) / 6.0
print("\r"+str(update_nr)+" At: " + str(global_write_counter + 1) + " of " + str(total_length) + ", done: " + str(done_counter) + ", avg serialize: " + str(TimeFrame(mean_for_serialize.mean)) + ", rest: " + str(TimeFrame(float(total_length - global_write_counter) * max_time)) + ', avg read: ' + str(TimeFrame(mean_for_read.mean)) + ', avg write: ' + str(TimeFrame(mean_for_write.mean)) + ', len: ' + str(lenght_now) + ' ', end='')
update_nr += 1
sys.stdout.flush()
time.sleep(1)
if global_write_counter >= total_length:
done = True
break
print("Done with updating waiting for finish of loops!")
for thread in threads:
thread.join()
print("All done")