-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_keyp_inverse.py
320 lines (240 loc) · 11.5 KB
/
train_keyp_inverse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import os
import time
from datetime import datetime
from itertools import islice
from pytz import timezone
import torch.nn.functional as F
from torch import optim
import datasets
import hyperparameters
import utils
from losses import temporal_separation_loss, get_heatmap_seq_loss
import torch
from utils import get_latest_checkpoint
from vision import ImagesToKeypEncoder, KeypToImagesDecoder, KeypToImagesDecoderNoFirst, KeypPredictor, KeypInverseModel
import pytorch_lightning as pl
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
import numpy as np
from visualizer import save_img_keyp
class KeypointModel(pl.LightningModule):
def __init__(self, hparams):
super(KeypointModel, self).__init__()
cfg = hparams
input_shape_no_batch = cfg.data_shapes['image'][1:]
# define all the models
self.images_to_keypoints_net = ImagesToKeypEncoder(cfg, input_shape_no_batch)
self.keypoints_to_images_net = KeypToImagesDecoderNoFirst(cfg, input_shape_no_batch)
self.keyp_inverse_net = KeypInverseModel(cfg)
self.cfg = cfg
self.hparams = cfg
self.log_steps = 0
def forward(self, img_seq):
keypoints_seq, heatmaps_seq = self.images_to_keypoints_net(img_seq)
reconstructed_img_seq = self.keypoints_to_images_net(keypoints_seq)
pred_action_seq = self.keyp_inverse_net(keypoints_seq[Ellipsis, :2])
return keypoints_seq, \
heatmaps_seq, \
reconstructed_img_seq, \
pred_action_seq
def unroll(self, img_seq, action_seq):
# keypoints_seq, _ = self.images_to_keypoints_net(img_seq)
# keypoint_0 = keypoints_seq[:, 0, :, :2]
# pred_keypoints_seq = self.keyp_pred_net.unroll(keypoint_0, action_seq)
# pred_keypoints_seq = torch.cat((pred_keypoints_seq, keypoints_seq[:, 1:, :, 2].unsqueeze(3)), dim=3)
# pred_img_seq = self.keypoints_to_images_net(pred_keypoints_seq)
#
# return pred_img_seq, pred_keypoints_seq
pass
def img_to_keyp(self, img_seq):
keypoints_seq, _ = self.images_to_keypoints_net(img_seq)
return keypoints_seq
def keyp_to_img(self, keyp_seq):
pred_img_seq = self.keypoints_to_images_net(keyp_seq)
return pred_img_seq
def step(self, batch, batch_idx, is_train=True):
data = batch
img_seq = data['image']
action_seq = data['action']
keypoints_seq, heatmaps_seq, reconstructed_img_seq, \
pred_action_seq= self.forward(img_seq)
reconstruction_loss = F.mse_loss(img_seq, reconstructed_img_seq, reduction='sum')
reconstruction_loss /= (img_seq.shape[0] * img_seq.shape[1])
heatmap_loss = get_heatmap_seq_loss(heatmaps_seq)
pred_action_loss = F.mse_loss(pred_action_seq, action_seq[:,:-1], reduction='sum')
pred_action_loss /= (pred_action_seq.shape[0] * pred_action_seq.shape[1])
T = self.cfg.observed_steps
temporal_loss = temporal_separation_loss(self.cfg, keypoints_seq[:, :T])
loss = reconstruction_loss + \
(heatmap_loss * self.cfg.heatmap_regularization) + \
(temporal_loss * self.cfg.separation_loss_scale) + \
(pred_action_loss * self.cfg.pred_action_loss_scale)
pfx = '' if is_train else 'test_'
output = {
pfx + 'loss': loss,
pfx + 'recon_loss': reconstruction_loss,
pfx + 'hmap_loss': heatmap_loss,
pfx + 'temporal_loss': temporal_loss,
pfx + 'pred_action_loss': pred_action_loss
}
if self.cfg.log_training and is_train:
if self.global_step % 500 == 0: self.log_train_viz()
return output
def training_step(self, batch, batch_idx):
return self.step(batch, batch_idx, True)
def validation_step(self, batch, batch_idx):
return self.step(batch, batch_idx, False)
def test_step(self, batch, batch_idx):
return self.step(batch, batch_idx, False)
def aggregate_metrics(self, outputs, is_train=True):
pfx = '' if is_train else 'test_'
avg_loss = torch.stack([x[pfx + 'loss'] for x in outputs]).mean()
avg_recon_loss = torch.stack([x[pfx + 'recon_loss'] for x in outputs]).mean()
avg_hmap_loss = torch.stack([x[pfx + 'hmap_loss'] for x in outputs]).mean()
avg_temporal_loss = torch.stack([x[pfx + 'temporal_loss'] for x in outputs]).mean()
avg_action_loss = torch.stack([x[pfx + 'pred_action_loss'] for x in outputs]).mean()
pfx = "train/" if is_train else "test/"
logs = {
pfx+'loss': avg_loss,
pfx+'recon_loss': avg_recon_loss,
pfx+'hmap_loss': avg_hmap_loss,
pfx+'temporal_loss': avg_temporal_loss,
pfx+'pred_action_loss': avg_action_loss
}
return logs
def training_epoch_end(self, outputs):
logs = self.aggregate_metrics(outputs, True)
return {'log': logs, 'progress_bar': logs}
def validation_epoch_end(self, outputs):
logs = self.aggregate_metrics(outputs, False)
print()
return {'log': logs, 'progress_bar': logs}
def test_epoch_end(self, outputs):
logs = self.aggregate_metrics(outputs, False)
print()
return {'log': logs, 'progress_bar': logs}
def configure_optimizers(self):
optimizer = optim.Adam(self.parameters(), lr=self.cfg.learning_rate, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3000, gamma=0.5)
return [optimizer], [scheduler]
#return optimizer
def train_dataloader(self):
train_loader, _ = datasets.get_sequence_dataset(
data_dir=os.path.join(self.cfg.data_dir, self.cfg.train_dir),
batch_size=self.cfg.batch_size,
num_timesteps=self.cfg.observed_steps + self.cfg.predicted_steps)
return train_loader
def val_dataloader(self):
self.val_loader, _ = datasets.get_sequence_dataset(
data_dir=os.path.join(self.cfg.data_dir, self.cfg.test_dir),
batch_size=self.cfg.batch_size,
num_timesteps=self.cfg.observed_steps + self.cfg.predicted_steps, shuffle=False)
return self.val_loader
def test_dataloader(self):
test_loader, _ = datasets.get_sequence_dataset(
data_dir=os.path.join(self.cfg.data_dir, self.cfg.test_dir),
batch_size=self.cfg.batch_size,
num_timesteps=self.cfg.observed_steps + self.cfg.predicted_steps, shuffle=False)
return test_loader
def log_train_viz(self):
print('\n',"*******Logging Intermediate Training: ", self.global_step, '*************\n')
for data in islice(self.val_loader, 4):
with torch.no_grad():
img_seq = data['image'].to(torch.device(self.cfg.device))
file_id_seq = data['file_idx']
frame_id_seq = data['frame_ind']
keyp_seq = self.img_to_keyp(img_seq)
s_n, s_t = 2, 5
img_sample_seq = img_seq[s_n:s_n+1, s_t]
keyp_sample_seq = keyp_seq[s_n:s_n+1, s_t]
file_id_sample_seq = file_id_seq[s_n:s_n+1, s_t]
frame_id_sample_seq = frame_id_seq[s_n:s_n+1, s_t]
self.save_sample_keyp(img_sample_seq, keyp_sample_seq,
file_id_sample_seq, frame_id_sample_seq,
self.global_step, self.cfg.log_training_path)
def save_sample_keyp(self, img_seq, keyp_seq,
file_id_seq, frame_id_seq, step_num, save_dir):
"""
:param img_seq: N x 3 x H x W
:param keyp_seq: N x num_keyp x 3
:param step_num: int
"""
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
img_seq_np = utils.img_torch_to_numpy(img_seq)
keyp_seq_np = keyp_seq.cpu().numpy()
file_dir = "file_{}_frame_{}"
N, num_keyp = keyp_seq_np.shape[:2]
for n in range(N):
file_id = file_id_seq[n]
frame_id = frame_id_seq[n]
img = img_seq_np[n]
keyps = keyp_seq_np[n]
save_file_dir = os.path.join(save_dir, file_dir.format(file_id, frame_id))
if not os.path.isdir(save_file_dir):
os.makedirs(save_file_dir)
keyps_history_path = os.path.join(save_file_dir, "keyps_history.npy")
if not os.path.isfile(keyps_history_path):
keyps_history = keyps[np.newaxis,:,:]
else:
prev_keyps_history = np.load(keyps_history_path)
keyps_history = np.concatenate((prev_keyps_history, keyps[np.newaxis,:,:]))
for k in range(num_keyp):
save_path = os.path.join(save_file_dir, 'keyp_{}.png'.format(k))
keyp_history = keyps_history[:, k]
save_img_keyp(img, keyp_history, save_path, k, step_num)
np.save(keyps_history_path, keyps_history)
self.log_steps += 1
def main(args):
utils.set_seed_everywhere(args.seed)
cfg = hyperparameters.get_config(args)
cfg.seed = args.seed
cfg.base_dir = cfg.base_dir + "_s_" + str(args.seed)
args.cuda = not args.no_cuda and torch.cuda.is_available()
time_str = datetime.now(timezone('US/Eastern')).strftime("%Y-%m-%d-%H-%M-%S")
exp_dir = os.path.join(cfg.base_dir, time_str)
checkpoint_dir = os.path.join(exp_dir, cfg.checkpoint_dir)
log_dir = os.path.join(exp_dir, cfg.log_dir)
cfg.log_training = args.log_training
cfg.log_training_path = os.path.join(exp_dir, args.log_training_path)
cfg.num_steps = args.num_steps
cfg.device = str(torch.device("cuda" if args.cuda else "cpu"))
save_config(cfg, exp_dir, "config.json")
print("Log path: ", log_dir, "Checkpoint Dir: ", checkpoint_dir)
num_timsteps = cfg.observed_steps + cfg.predicted_steps
data_shape = {'image': (None, num_timsteps, 3, 64, 64)}
cfg.data_shapes = data_shape
model = KeypointModel(cfg)
cp_callback = ModelCheckpoint(filepath=os.path.join(checkpoint_dir, "model_"),
period=25, save_top_k=-1)
logger = TensorBoardLogger(log_dir, name="", version=None)
gpus = 1 if args.cuda else None
if args.pretrained_path:
checkpoint_path = get_latest_checkpoint(args.pretrained_path)
import json
model = KeypointModel.load_from_checkpoint(checkpoint_path)
print(json.dumps(model.cfg, indent=4))
print("On GPU Device: ", gpus)
trainer = Trainer(#max_epochs=args.num_epochs,
max_steps=args.num_steps,
logger=logger,
checkpoint_callback=cp_callback,
gpus=gpus,
#distributed_backend='dp',
progress_bar_refresh_rate=1,
#gradient_clip_val=cfg.clipnorm,
fast_dev_run=False,
#train_percent_check=0.1,val_percent_check=0.0,
val_percent_check=0.3,
track_grad_norm=2,
num_sanity_val_steps = 0,
show_progress_bar=True)
trainer.fit(model)
save_path = os.path.join(checkpoint_dir, "model_final_" + str(args.num_steps) + ".ckpt")
print("Saving model finally:")
trainer.save_checkpoint(save_path)
if __name__ == "__main__":
from register_args import get_argparse, save_config
args = get_argparse(False).parse_args()
main(args)