forked from Khabermas/NLP_ps1
-
Notifications
You must be signed in to change notification settings - Fork 9
/
q2_neural.py
97 lines (75 loc) · 2.81 KB
/
q2_neural.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/usr/bin/env python
import numpy as np
import random
from q1_softmax import softmax
from q2_sigmoid import sigmoid, sigmoid_grad
from q2_gradcheck import gradcheck_naive
def forward_backward_prop(data, labels, params, dimensions):
"""
Forward and backward propagation for a two-layer sigmoidal network
Compute the forward propagation and for the cross entropy cost,
and backward propagation for the gradients for all parameters.
Arguments:
data -- M x Dx matrix, where each row is a training example.
labels -- M x Dy matrix, where each row is a one-hot vector.
params -- Model parameters, these are unpacked for you.
dimensions -- A tuple of input dimension, number of hidden units
and output dimension
"""
### Unpack network parameters (do not modify)
ofs = 0
Dx, H, Dy = (dimensions[0], dimensions[1], dimensions[2])
W1 = np.reshape(params[ofs:ofs+ Dx * H], (Dx, H))
ofs += Dx * H
b1 = np.reshape(params[ofs:ofs + H], (1, H))
ofs += H
W2 = np.reshape(params[ofs:ofs + H * Dy], (H, Dy))
ofs += H * Dy
b2 = np.reshape(params[ofs:ofs + Dy], (1, Dy))
### YOUR CODE HERE: forward propagation
hidden = sigmoid(data.dot(W1) + b1)
prediction = softmax(hidden.dot(W2) + b2)
cost = -np.sum(np.log(prediction) * labels)
### END YOUR CODE
### YOUR CODE HERE: backward propagation
delta = prediction - labels
gradW2 = hidden.T.dot(delta)
gradb2 = np.sum(delta, axis = 0)
delta = delta.dot(W2.T) * sigmoid_grad(hidden)
gradW1 = data.T.dot(delta)
gradb1 = np.sum(delta, axis = 0)
### END YOUR CODE
### Stack gradients (do not modify)
grad = np.concatenate((gradW1.flatten(), gradb1.flatten(),
gradW2.flatten(), gradb2.flatten()))
return cost, grad
def sanity_check():
"""
Set up fake data and parameters for the neural network, and test using
gradcheck.
"""
print "Running sanity check..."
N = 20
dimensions = [10, 5, 10]
data = np.random.randn(N, dimensions[0]) # each row will be a datum
labels = np.zeros((N, dimensions[2]))
for i in xrange(N):
labels[i, random.randint(0,dimensions[2]-1)] = 1
params = np.random.randn((dimensions[0] + 1) * dimensions[1] + (
dimensions[1] + 1) * dimensions[2], )
gradcheck_naive(lambda params:
forward_backward_prop(data, labels, params, dimensions), params)
def your_sanity_checks():
"""
Use this space add any additional sanity checks by running:
python q2_neural.py
This function will not be called by the autograder, nor will
your additional tests be graded.
"""
#print "Running your sanity checks..."
### YOUR CODE HERE
#raise NotImplementedError
### END YOUR CODE
if __name__ == "__main__":
sanity_check()
your_sanity_checks()