forked from justmarkham/DAT4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path12_kmeans_class_exercise.py
164 lines (133 loc) · 4.9 KB
/
12_kmeans_class_exercise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
'''
CLUSTER ANALYSIS
How do we implement a k-means clustering algorithm?
scikit-learn KMeans documentation for reference:
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
'''
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from sklearn import datasets
import pandas as pd
import numpy as np
# ------------------------------------------
# EXERCISE: Compute the centoid of the following data
# [2, 5], [4, 4], [3, 3]
# ------------------------------------------
d = np.array([[2, 5], [4, 4], [3, 3]])
x, y = d.mean(axis=0)
# Import iris data
iris = datasets.load_iris()
d = iris.data
np.random.seed(0)
# Run KMeans
est = KMeans(n_clusters=3, init='random')
est.fit(d)
y_kmeans = est.predict(d)
colors = np.array(['#FF0054','#FBD039','#23C2BC'])
plt.figure()
plt.scatter(d[:, 2], d[:, 0], c=colors[y_kmeans], s=50)
plt.xlabel(iris.feature_names[2])
plt.ylabel(iris.feature_names[0])
# ------------------------------------------
# EXERCISE: Find the centers and plot them
# on the same graph.
# ------------------------------------------
centers = est.cluster_centers_
plt.scatter(centers[:, 2], centers[:, 0], c='k', linewidths=3,
marker='+', s=300)
'''
VISUALIZING THE CLUSTERS
What are some different options to visualize
multi-dimensional data? Let's look at three ways you can do this.
- Scatter Plot Grid
- 3D Plot
- Parallel Coordinates
'''
#================================
# Option #1: Scatter Plot Grid
plt.figure(figsize=(8, 8))
plt.suptitle('Scatter Plot Grid', fontsize=14)
# Upper Left
plt.subplot(221)
plt.scatter(d[:,2], d[:,0], c = colors[y_kmeans])
plt.ylabel(iris.feature_names[0])
# Upper Right
plt.subplot(222)
plt.scatter(d[:,3], d[:,0], c = colors[y_kmeans])
# Lower Left
plt.subplot(223)
plt.scatter(d[:,2], d[:,1], c = colors[y_kmeans])
plt.ylabel(iris.feature_names[1])
plt.xlabel(iris.feature_names[2])
# Lower Right
plt.subplot(224)
plt.scatter(d[:,3], d[:,1], c = colors[y_kmeans])
plt.xlabel(iris.feature_names[3])
#================================
# Option #2: 3d plot
from mpl_toolkits.mplot3d import Axes3D
plt.suptitle('3d plot', fontsize=15)
ax = Axes3D(plt.figure(figsize=(10, 9)), rect=[.01, 0, 0.95, 1], elev=30, azim=134)
ax.scatter(d[:,0], d[:,1], d[:,2], c = colors[y_kmeans], s=120)
ax.set_xlabel('Sepal Width')
ax.set_ylabel('Sepal Width')
ax.set_zlabel('Petal Length')
# Modified from the example here:
# http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_iris.html
# ---------------------------------------
# EXERCISE: Create a Parallel Coordinates
# visualization with the classes
# ---------------------------------------
#================================
# Option 3: Parallel Coordinates
from pandas.tools.plotting import parallel_coordinates
# I'm going to convert to a pandas dataframe
# Using a snippet of code we learned from one of Kevin's lectures!
features = [name[:-5].title().replace(' ', '') for name in iris.feature_names]
iris_df = pd.DataFrame(iris.data, columns = features)
iris_df['Name'] = iris.target_names[iris.target]
parallel_coordinates(data=iris_df, class_column='Name',
colors=('#FF0054', '#FBD039', '#23C2BC'))
'''
DETERMINING THE NUMBER OF CLUSTERS
How do you choose k? There isn't a bright line, but we can evaluate
performance metrics such as the silhouette coefficient and within sum of
squared errors across values of k.
scikit-learn Clustering metrics documentation:
http://scikit-learn.org/stable/modules/classes.html#clustering-metrics
'''
# Create a bunch of different models
k_rng = range(1,15)
est = [KMeans(n_clusters = k).fit(d) for k in k_rng]
#================================
# Option 1: Silhouette Coefficient
# Generally want SC to be closer to 1, while also minimizing k
from sklearn import metrics
silhouette_score = [metrics.silhouette_score(d, e.labels_, metric='euclidean') for e in est[1:]]
# Plot the results
plt.figure(figsize=(7, 8))
plt.subplot(211)
plt.title('Using the elbow method to inform k choice')
plt.plot(k_rng[1:], silhouette_score, 'b*-')
plt.xlim([1,15])
plt.grid(True)
plt.ylabel('Silhouette Coefficient')
plt.plot(3,silhouette_score[1], 'o', markersize=12, markeredgewidth=1.5,
markerfacecolor='None', markeredgecolor='r')
# -----------------------------------------------------
# EXERCISE: Calculate the within sum of squared errors
# and plot over a range of k
# -----------------------------------------------------
#================================
# Option 2: Within Sum of Squares (a.k.a., inertia)
# Generally want to minimize WSS, while also minimizing k
within_sum_squares = [e.inertia_ for e in est]
# Plot the results
plt.subplot(212)
plt.plot(k_rng, within_sum_squares, 'b*-')
plt.xlim([1,15])
plt.grid(True)
plt.xlabel('k')
plt.ylabel('Within Sum of Squares')
plt.plot(3,within_sum_squares[2], 'ro', markersize=12, markeredgewidth=1.5,
markerfacecolor='None', markeredgecolor='r')