-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.cpp
290 lines (201 loc) · 8.68 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/*
Copyright (c) 2020, Tharaka Ratnayake, email: [email protected]
All rights reserved. https://github.com/tharaka27/ImageStitcherFAST
Revision history:
March 30th, 2020: initial version.
*/
#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching.hpp"
#include "opencv2/features2d.hpp"
#include <opencv2/calib3d.hpp>
cv::Mat stitch_image(cv::Mat image1, cv::Mat image2, cv::Mat H)
{
cv::Mat result;
// cv::Mat result23;
warpPerspective(image1, result, H, cv::Size(image1.cols + image2.cols, image1.rows));
cv::Mat half(result, cv::Rect(0, 0, image2.cols, image2.rows));
image2.copyTo(half);
return result;
}
int main()
{
auto start_fast1 = std::chrono::high_resolution_clock::now();
cv::Mat left_image = cv::imread("C:\\Users\\ASUS\\Desktop\\sem 5 project\\ImageStitcherSIFT\\Data_FPGA\\left_r.jpg");
cv::Mat middle_image = cv::imread("C:\\Users\\ASUS\\Desktop\\sem 5 project\\ImageStitcherSIFT\\Data_FPGA\\middle_r.jpg");
//cv::Mat right_image = cv::imread("C:\\Users\\ASUS\\Desktop\\sem 5 project\\ImageStitcherSIFT\\Data_3\\right.jpg");
cv::Mat left_image_gray;
cv::Mat middle_image_gray;
//cv::Mat right_image_gray;
cv::flip(left_image, left_image, 1);
cv::flip(middle_image, middle_image, 1);
//-----------------------------------------------------------------
cv::cvtColor(left_image, left_image_gray, cv::COLOR_BGR2GRAY);
cv::cvtColor(middle_image, middle_image_gray, cv::COLOR_BGR2GRAY);
//cv::cvtColor(right_image, right_image_gray, cv::COLOR_BGR2GRAY);
std::vector<cv::KeyPoint> keypoints_left, keypoints_right, keypoints_middle;
cv::Mat descriptors_left, descriptors_right, descriptors_middle;
//-----------------------------------------------------------------
//
// Detect Keypoints
//
//-----------------------------------------------------------------
//auto start_detector = std::chrono::high_resolution_clock::now();
/*
cv::Ptr<cv::FastFeatureDetector> detector = cv::FastFeatureDetector::create();
detector->detect(left_image, keypoints_left);
detector->detect(middle_image, keypoints_middle);
*/
//detector->detect(right_image, keypoints_right);
cv::FAST(left_image, keypoints_left, 15, true);
cv::FAST(middle_image, keypoints_middle, 15, true);
std::cout<<"Detection done \n";
std::cout << "left Size is " << keypoints_left.size();
std::cout << " , middle Size is " << keypoints_middle.size();
std::cout << "\n";
//-----------------------------------------------------------------
//
// Build descriptors
//
//-----------------------------------------------------------------
auto start_descriptor = std::chrono::high_resolution_clock::now();
cv::Ptr<cv::ORB> extractor = cv::ORB::create();
//cv::Ptr<cv::BRISK> extractor = cv::BRISK::create();
cv::Mat mask;
//extractor->detectAndCompute(left_image, mask, keypoints_left, descriptors_left, true);
//extractor->detectAndCompute(middle_image, mask, keypoints_middle, descriptors_middle, true);
//extractor->detect(left_image, keypoints_left);
//extractor->detect(middle_image, keypoints_middle);
extractor->compute(left_image, keypoints_left, descriptors_left);
extractor->compute(middle_image, keypoints_middle, descriptors_middle);
//cv::ORB c;
//c.compute(left_image, keypoints_left, descriptors_left);
//c.compute(middle_image, keypoints_middle, descriptors_middle);
//extractor->compute(right_image, keypoints_right, descriptors_right);
std::cout<<"Detection done \n";
std::cout << "left Size is " << keypoints_left.size();
std::cout << " , middle Size is " << keypoints_middle.size();
std::cout << "\n";
//std::cout << descriptors_left;
std::cout << "Descriptor done \n";
for (int i = 0; i < 5; i++) {
std::cout << keypoints_left[i].angle << " ";
}
//return 0;
//-----------------------------------------------------------------
//
// Matching descriptors
//
//-----------------------------------------------------------------
auto start_matching = std::chrono::high_resolution_clock::now();
cv::Ptr<cv::DescriptorMatcher> matcher = cv::DescriptorMatcher::create("BruteForce-Hamming");
std::vector< cv::DMatch > left_matches , right_matches;
matcher->match(descriptors_left, descriptors_middle, left_matches);
//matcher.match(descriptors_middle, descriptors_right, right_matches);
std::cout << "Matching done \n";
//-----------------------------------------------------------------
//
// Build descriptors
//
//-----------------------------------------------------------------
double max_dist1 = 0; double min_dist1 = 100;
//double max_dist2 = 0; double min_dist2 = 100;
//-- Quick calculation of max and min distances between keypoints
for (int i = 0; i < descriptors_left.rows; i++)
{
double dist1 = left_matches[i].distance;
if (dist1 < min_dist1) {
min_dist1 = dist1;
}
if (dist1 > max_dist1) {
max_dist1 = dist1;
}
}
/*
for (int i = 0; i < descriptors_right.rows; i++)
{
double dist2 = right_matches[i].distance;
if (dist2 < min_dist2) {
min_dist2 = dist2;
}
if (dist2 > max_dist2) {
max_dist2 = dist2;
}
}
*/
printf("-- Max dist: %f \n", max_dist1);
printf("-- Min dist: %f \n", min_dist1);
if (min_dist1 < 15) {
min_dist1 = 15;
}
//-- Use only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< cv::DMatch > good_left_matches, good_right_matches;
cv::Mat result;
// cv::Mat result23;
cv::Mat H_left, H_right;
// cv::Mat H23;
for (int i = 0; i < descriptors_left.rows; i++)
{
if (left_matches[i].distance < 3 * min_dist1)
{
good_left_matches.push_back(left_matches[i]);
}
}
/*
for (int i = 0; i < descriptors_right.rows; i++)
{
if (right_matches[i].distance < 3 * min_dist2)
{
good_right_matches.push_back(right_matches[i]);
}
}
*/
std::cout << "good matches : " << good_left_matches.size() << "\n";
std::vector< cv::Point2f > obj_left, obj_right;
std::vector< cv::Point2f > scene_left, scene_right;
for (int i = 0; i < good_left_matches.size(); i++)
{
//-- Get the keypoints from the good matches
obj_left.push_back(keypoints_left[good_left_matches[i].queryIdx].pt);
scene_left.push_back(keypoints_middle[good_left_matches[i].trainIdx].pt);
}
/*
for (int i = 0; i < good_right_matches.size(); i++)
{
//-- Get the keypoints from the good matches
obj_right.push_back(keypoints_middle[good_right_matches[i].queryIdx].pt);
scene_right.push_back(keypoints_right[good_right_matches[i].trainIdx].pt);
}
*/
auto start_homography = std::chrono::high_resolution_clock::now();
// Find the Homography Matrix for img 1 and img2
H_left = cv::findHomography(obj_left,scene_left,cv::RANSAC);
//H_right = cv::findHomography(obj_right, scene_right, cv::RANSAC);
std::cout << "H done \n";
cv::Mat result_left = stitch_image(left_image,middle_image, H_left);
//cv::Mat result_middle = stitch_image(middle_image, right_image, H_right);
auto end_full = std::chrono::high_resolution_clock::now();
auto duration_fast1 = std::chrono::duration_cast<std::chrono::microseconds>(end_full - start_fast1);
//auto duration_loading = std::chrono::duration_cast<std::chrono::microseconds>(start_detector - start_fast1);
//auto duration_detector = std::chrono::duration_cast<std::chrono::microseconds>(start_descriptor - start_detector);
auto duration_descriptor = std::chrono::duration_cast<std::chrono::microseconds>(start_matching - start_descriptor);
auto duration_matching = std::chrono::duration_cast<std::chrono::microseconds>(start_homography - start_matching);
auto duration_homography = std::chrono::duration_cast<std::chrono::microseconds>(end_full - start_homography);
std::cout << "Time spent for first image: " << duration_fast1.count() << std::endl;
//std::cout << "Time spent for loading: " << duration_loading.count() << std::endl;
//std::cout << "Time spent for detector: " << duration_detector.count() << std::endl;
std::cout << "Time spent for descriptor: " << duration_descriptor.count() << std::endl;
std::cout << "Time spent for matching: " << duration_matching.count() << std::endl;
std::cout << "Time spent for homography: " << duration_homography.count() << std::endl;
std::cout << "Time spent for total: " << duration_homography.count() + duration_descriptor.count() + duration_matching.count() << std::endl;
//std::cout << "Time spent for total: " << duration_homography.count() + duration_loading.count() + duration_detector.count() + duration_descriptor.count() + duration_matching.count() << std::endl;
cv::imshow("stitched",result_left);
cv::waitKey(0);
for (int i = 0; i < obj_left.size(); i++) {
std::cout << obj_left[i] << " " << scene_left[i] << std::endl;
}
std::cout << H_left;
return 0;
}