-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtda_ts.py
112 lines (34 loc) · 933 Bytes
/
tda_ts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import numpy as np;
import matplotlib as plt;
from gudhi import plot_diagram, plot_persistence_barcode;
import ripser;
#
# Generate time-series temperature data
#
np.random.seed(0);
num_points = 100;
time = np.linspace(0, 10, num_points);
temp = np.sin(time) + np.random.normal(0, .20, num_points);
#
# Create distance matrix
#
distance_mat = np.abs(np.subtract.outer(temp, temp));
#
# Persistent Homology Computations
#
# • compute persistent homology of the distance matrix
# • obtain topological information about data (connected components, loops, voids)
#
rip = ripser(distance_mat, maxdim=1);
#
# Plot persistence diagrams
#
plot_diagram(rip['dgms']);
plt.title('Persistence Diagram');
# plt.show();
#
# Plot persistence barcode
#
plot_persistence_barcode(rip['dgms']);
plt.title('Persistence Barcode');
# plt.show();