forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
imagenet_main.py
389 lines (322 loc) · 13.2 KB
/
imagenet_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs a ResNet model on the ImageNet dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import app as absl_app
from absl import flags
import tensorflow as tf # pylint: disable=g-bad-import-order
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.resnet import imagenet_preprocessing
from official.resnet import resnet_model
from official.resnet import resnet_run_loop
DEFAULT_IMAGE_SIZE = 224
NUM_CHANNELS = 3
NUM_CLASSES = 1001
NUM_IMAGES = {
'train': 1281167,
'validation': 50000,
}
_NUM_TRAIN_FILES = 1024
_SHUFFLE_BUFFER = 10000
DATASET_NAME = 'ImageNet'
###############################################################################
# Data processing
###############################################################################
def get_filenames(is_training, data_dir):
"""Return filenames for dataset."""
if is_training:
return [
os.path.join(data_dir, 'train-%05d-of-01024' % i)
for i in range(_NUM_TRAIN_FILES)]
else:
return [
os.path.join(data_dir, 'validation-%05d-of-00128' % i)
for i in range(128)]
def _parse_example_proto(example_serialized):
"""Parses an Example proto containing a training example of an image.
The output of the build_image_data.py image preprocessing script is a dataset
containing serialized Example protocol buffers. Each Example proto contains
the following fields (values are included as examples):
image/height: 462
image/width: 581
image/colorspace: 'RGB'
image/channels: 3
image/class/label: 615
image/class/synset: 'n03623198'
image/class/text: 'knee pad'
image/object/bbox/xmin: 0.1
image/object/bbox/xmax: 0.9
image/object/bbox/ymin: 0.2
image/object/bbox/ymax: 0.6
image/object/bbox/label: 615
image/format: 'JPEG'
image/filename: 'ILSVRC2012_val_00041207.JPEG'
image/encoded: <JPEG encoded string>
Args:
example_serialized: scalar Tensor tf.string containing a serialized
Example protocol buffer.
Returns:
image_buffer: Tensor tf.string containing the contents of a JPEG file.
label: Tensor tf.int32 containing the label.
bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
where each coordinate is [0, 1) and the coordinates are arranged as
[ymin, xmin, ymax, xmax].
"""
# Dense features in Example proto.
feature_map = {
'image/encoded': tf.io.FixedLenFeature([], dtype=tf.string,
default_value=''),
'image/class/label': tf.io.FixedLenFeature([], dtype=tf.int64,
default_value=-1),
'image/class/text': tf.io.FixedLenFeature([], dtype=tf.string,
default_value=''),
}
sparse_float32 = tf.io.VarLenFeature(dtype=tf.float32)
# Sparse features in Example proto.
feature_map.update(
{k: sparse_float32 for k in ['image/object/bbox/xmin',
'image/object/bbox/ymin',
'image/object/bbox/xmax',
'image/object/bbox/ymax']})
features = tf.io.parse_single_example(serialized=example_serialized,
features=feature_map)
label = tf.cast(features['image/class/label'], dtype=tf.int32)
xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)
# Note that we impose an ordering of (y, x) just to make life difficult.
bbox = tf.concat([ymin, xmin, ymax, xmax], 0)
# Force the variable number of bounding boxes into the shape
# [1, num_boxes, coords].
bbox = tf.expand_dims(bbox, 0)
bbox = tf.transpose(a=bbox, perm=[0, 2, 1])
return features['image/encoded'], label, bbox
def parse_record(raw_record, is_training, dtype):
"""Parses a record containing a training example of an image.
The input record is parsed into a label and image, and the image is passed
through preprocessing steps (cropping, flipping, and so on).
Args:
raw_record: scalar Tensor tf.string containing a serialized
Example protocol buffer.
is_training: A boolean denoting whether the input is for training.
dtype: data type to use for images/features.
Returns:
Tuple with processed image tensor and one-hot-encoded label tensor.
"""
image_buffer, label, bbox = _parse_example_proto(raw_record)
image = imagenet_preprocessing.preprocess_image(
image_buffer=image_buffer,
bbox=bbox,
output_height=DEFAULT_IMAGE_SIZE,
output_width=DEFAULT_IMAGE_SIZE,
num_channels=NUM_CHANNELS,
is_training=is_training)
image = tf.cast(image, dtype)
return image, label
def input_fn(is_training,
data_dir,
batch_size,
num_epochs=1,
dtype=tf.float32,
datasets_num_private_threads=None,
num_parallel_batches=1,
parse_record_fn=parse_record,
input_context=None,
drop_remainder=False):
"""Input function which provides batches for train or eval.
Args:
is_training: A boolean denoting whether the input is for training.
data_dir: The directory containing the input data.
batch_size: The number of samples per batch.
num_epochs: The number of epochs to repeat the dataset.
dtype: Data type to use for images/features
datasets_num_private_threads: Number of private threads for tf.data.
num_parallel_batches: Number of parallel batches for tf.data.
parse_record_fn: Function to use for parsing the records.
input_context: A `tf.distribute.InputContext` object passed in by
`tf.distribute.Strategy`.
drop_remainder: A boolean indicates whether to drop the remainder of the
batches. If True, the batch dimension will be static.
Returns:
A dataset that can be used for iteration.
"""
filenames = get_filenames(is_training, data_dir)
dataset = tf.data.Dataset.from_tensor_slices(filenames)
if input_context:
tf.compat.v1.logging.info(
'Sharding the dataset: input_pipeline_id=%d num_input_pipelines=%d' % (
input_context.input_pipeline_id, input_context.num_input_pipelines))
dataset = dataset.shard(input_context.num_input_pipelines,
input_context.input_pipeline_id)
if is_training:
# Shuffle the input files
dataset = dataset.shuffle(buffer_size=_NUM_TRAIN_FILES)
# Convert to individual records.
# cycle_length = 10 means that up to 10 files will be read and deserialized in
# parallel. You may want to increase this number if you have a large number of
# CPU cores.
dataset = dataset.interleave(
tf.data.TFRecordDataset,
cycle_length=10,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
return resnet_run_loop.process_record_dataset(
dataset=dataset,
is_training=is_training,
batch_size=batch_size,
shuffle_buffer=_SHUFFLE_BUFFER,
parse_record_fn=parse_record_fn,
num_epochs=num_epochs,
dtype=dtype,
datasets_num_private_threads=datasets_num_private_threads,
num_parallel_batches=num_parallel_batches,
drop_remainder=drop_remainder
)
def get_synth_input_fn(dtype):
return resnet_run_loop.get_synth_input_fn(
DEFAULT_IMAGE_SIZE, DEFAULT_IMAGE_SIZE, NUM_CHANNELS, NUM_CLASSES,
dtype=dtype)
###############################################################################
# Running the model
###############################################################################
class ImagenetModel(resnet_model.Model):
"""Model class with appropriate defaults for Imagenet data."""
def __init__(self, resnet_size, data_format=None, num_classes=NUM_CLASSES,
resnet_version=resnet_model.DEFAULT_VERSION,
dtype=resnet_model.DEFAULT_DTYPE):
"""These are the parameters that work for Imagenet data.
Args:
resnet_size: The number of convolutional layers needed in the model.
data_format: Either 'channels_first' or 'channels_last', specifying which
data format to use when setting up the model.
num_classes: The number of output classes needed from the model. This
enables users to extend the same model to their own datasets.
resnet_version: Integer representing which version of the ResNet network
to use. See README for details. Valid values: [1, 2]
dtype: The TensorFlow dtype to use for calculations.
"""
# For bigger models, we want to use "bottleneck" layers
if resnet_size < 50:
bottleneck = False
else:
bottleneck = True
super(ImagenetModel, self).__init__(
resnet_size=resnet_size,
bottleneck=bottleneck,
num_classes=num_classes,
num_filters=64,
kernel_size=7,
conv_stride=2,
first_pool_size=3,
first_pool_stride=2,
block_sizes=_get_block_sizes(resnet_size),
block_strides=[1, 2, 2, 2],
resnet_version=resnet_version,
data_format=data_format,
dtype=dtype
)
def _get_block_sizes(resnet_size):
"""Retrieve the size of each block_layer in the ResNet model.
The number of block layers used for the Resnet model varies according
to the size of the model. This helper grabs the layer set we want, throwing
an error if a non-standard size has been selected.
Args:
resnet_size: The number of convolutional layers needed in the model.
Returns:
A list of block sizes to use in building the model.
Raises:
KeyError: if invalid resnet_size is received.
"""
choices = {
18: [2, 2, 2, 2],
34: [3, 4, 6, 3],
50: [3, 4, 6, 3],
101: [3, 4, 23, 3],
152: [3, 8, 36, 3],
200: [3, 24, 36, 3]
}
try:
return choices[resnet_size]
except KeyError:
err = ('Could not find layers for selected Resnet size.\n'
'Size received: {}; sizes allowed: {}.'.format(
resnet_size, choices.keys()))
raise ValueError(err)
def imagenet_model_fn(features, labels, mode, params):
"""Our model_fn for ResNet to be used with our Estimator."""
# Warmup and higher lr may not be valid for fine tuning with small batches
# and smaller numbers of training images.
if params['fine_tune']:
warmup = False
base_lr = .1
else:
warmup = True
base_lr = .128
learning_rate_fn = resnet_run_loop.learning_rate_with_decay(
batch_size=params['batch_size'] * params.get('num_workers', 1),
batch_denom=256, num_images=NUM_IMAGES['train'],
boundary_epochs=[30, 60, 80, 90], decay_rates=[1, 0.1, 0.01, 0.001, 1e-4],
warmup=warmup, base_lr=base_lr)
return resnet_run_loop.resnet_model_fn(
features=features,
labels=labels,
mode=mode,
model_class=ImagenetModel,
resnet_size=params['resnet_size'],
weight_decay=flags.FLAGS.weight_decay,
learning_rate_fn=learning_rate_fn,
momentum=0.9,
data_format=params['data_format'],
resnet_version=params['resnet_version'],
loss_scale=params['loss_scale'],
loss_filter_fn=None,
dtype=params['dtype'],
fine_tune=params['fine_tune'],
label_smoothing=flags.FLAGS.label_smoothing
)
def define_imagenet_flags(dynamic_loss_scale=False):
resnet_run_loop.define_resnet_flags(
resnet_size_choices=['18', '34', '50', '101', '152', '200'],
dynamic_loss_scale=dynamic_loss_scale)
flags.adopt_module_key_flags(resnet_run_loop)
flags_core.set_defaults(train_epochs=90)
def run_imagenet(flags_obj):
"""Run ResNet ImageNet training and eval loop.
Args:
flags_obj: An object containing parsed flag values.
Returns:
Dict of results of the run. Contains the keys `eval_results` and
`train_hooks`. `eval_results` contains accuracy (top_1) and
accuracy_top_5. `train_hooks` is a list the instances of hooks used during
training.
"""
input_function = (flags_obj.use_synthetic_data and
get_synth_input_fn(flags_core.get_tf_dtype(flags_obj)) or
input_fn)
result = resnet_run_loop.resnet_main(
flags_obj, imagenet_model_fn, input_function, DATASET_NAME,
shape=[DEFAULT_IMAGE_SIZE, DEFAULT_IMAGE_SIZE, NUM_CHANNELS])
return result
def main(_):
with logger.benchmark_context(flags.FLAGS):
run_imagenet(flags.FLAGS)
if __name__ == '__main__':
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
define_imagenet_flags()
absl_app.run(main)