forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestimator_benchmark.py
386 lines (323 loc) · 13.4 KB
/
estimator_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Estimator benchmarks and accuracy tests."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
from absl import flags
from absl.testing import flagsaver
import tensorflow as tf # pylint: disable=g-bad-import-order
from official.resnet import cifar10_main as cifar_main
from official.resnet import imagenet_main
from official.utils.logs import hooks
IMAGENET_DATA_DIR_NAME = 'imagenet'
CIFAR_DATA_DIR_NAME = 'cifar-10-batches-bin'
FLAGS = flags.FLAGS
class EstimatorBenchmark(tf.test.Benchmark):
"""Base class to hold methods common to test classes in the module.
Code under test for Estimator models (ResNet50 and 56) report mostly the
same data and require the same FLAG setup.
"""
local_flags = None
def __init__(self, output_dir=None, default_flags=None, flag_methods=None):
if not output_dir:
output_dir = '/tmp'
self.output_dir = output_dir
self.default_flags = default_flags or {}
self.flag_methods = flag_methods or {}
def _get_model_dir(self, folder_name):
"""Returns directory to store info, e.g. saved model and event log."""
return os.path.join(self.output_dir, folder_name)
def _setup(self):
"""Sets up and resets flags before each test."""
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.DEBUG)
if EstimatorBenchmark.local_flags is None:
for flag_method in self.flag_methods:
flag_method()
# Loads flags to get defaults to then override. List cannot be empty.
flags.FLAGS(['foo'])
# Overrides flag values with defaults for the class of tests.
for k, v in self.default_flags.items():
setattr(FLAGS, k, v)
saved_flag_values = flagsaver.save_flag_values()
EstimatorBenchmark.local_flags = saved_flag_values
else:
flagsaver.restore_flag_values(EstimatorBenchmark.local_flags)
def _report_benchmark(self,
stats,
wall_time_sec,
top_1_max=None,
top_1_min=None):
"""Report benchmark results by writing to local protobuf file.
Args:
stats: dict returned from estimator models with known entries.
wall_time_sec: the during of the benchmark execution in seconds
top_1_max: highest passing level for top_1 accuracy.
top_1_min: lowest passing level for top_1 accuracy.
"""
examples_per_sec_hook = None
for hook in stats['train_hooks']:
if isinstance(hook, hooks.ExamplesPerSecondHook):
examples_per_sec_hook = hook
break
eval_results = stats['eval_results']
metrics = []
if 'accuracy' in eval_results:
metrics.append({'name': 'accuracy_top_1',
'value': eval_results['accuracy'].item(),
'min_value': top_1_min,
'max_value': top_1_max})
if 'accuracy_top_5' in eval_results:
metrics.append({'name': 'accuracy_top_5',
'value': eval_results['accuracy_top_5'].item()})
if examples_per_sec_hook:
exp_per_second_list = examples_per_sec_hook.current_examples_per_sec_list
# ExamplesPerSecondHook skips the first 10 steps.
exp_per_sec = sum(exp_per_second_list) / (len(exp_per_second_list))
metrics.append({'name': 'exp_per_second',
'value': exp_per_sec})
self.report_benchmark(
iters=eval_results['global_step'],
wall_time=wall_time_sec,
metrics=metrics)
class Resnet50EstimatorAccuracy(EstimatorBenchmark):
"""Benchmark accuracy tests for ResNet50 w/ Estimator."""
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
"""Benchmark accuracy tests for ResNet50 w/ Estimator.
Args:
output_dir: directory where to output e.g. log files
root_data_dir: directory under which to look for dataset
**kwargs: arbitrary named arguments. This is needed to make the
constructor forward compatible in case PerfZero provides more
named arguments before updating the constructor.
"""
flag_methods = [imagenet_main.define_imagenet_flags]
self.data_dir = os.path.join(root_data_dir, IMAGENET_DATA_DIR_NAME)
super(Resnet50EstimatorAccuracy, self).__init__(
output_dir=output_dir, flag_methods=flag_methods)
def benchmark_graph_8_gpu(self):
"""Test 8 GPUs graph mode."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 128 * 8
FLAGS.train_epochs = 90
FLAGS.epochs_between_evals = 10
FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
FLAGS.dtype = 'fp32'
FLAGS.hooks = ['ExamplesPerSecondHook']
self._run_and_report_benchmark()
def benchmark_graph_fp16_8_gpu(self):
"""Test FP16 8 GPUs graph mode."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 256 * 8
FLAGS.train_epochs = 90
FLAGS.epochs_between_evals = 10
FLAGS.model_dir = self._get_model_dir('benchmark_graph_fp16_8_gpu')
FLAGS.dtype = 'fp16'
FLAGS.hooks = ['ExamplesPerSecondHook']
self._run_and_report_benchmark()
def _run_and_report_benchmark(self):
start_time_sec = time.time()
stats = imagenet_main.run_imagenet(flags.FLAGS)
wall_time_sec = time.time() - start_time_sec
self._report_benchmark(stats,
wall_time_sec,
top_1_min=0.762,
top_1_max=0.766)
class Resnet50EstimatorBenchmark(EstimatorBenchmark):
"""Benchmarks for ResNet50 using Estimator."""
local_flags = None
def __init__(self, output_dir=None, default_flags=None):
flag_methods = [imagenet_main.define_imagenet_flags]
super(Resnet50EstimatorBenchmark, self).__init__(
output_dir=output_dir,
default_flags=default_flags,
flag_methods=flag_methods)
def benchmark_graph_fp16_1_gpu(self):
"""Benchmarks graph fp16 1 gpu."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_graph_fp16_1_gpu')
FLAGS.batch_size = 128
FLAGS.dtype = 'fp16'
FLAGS.hooks = ['ExamplesPerSecondHook']
self._run_and_report_benchmark()
def benchmark_graph_fp16_1_gpu_tweaked(self):
"""Benchmarks graph fp16 1 gpu tweaked."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.tf_gpu_thread_mode = 'gpu_private'
FLAGS.intra_op_parallelism_threads = 1
FLAGS.model_dir = self._get_model_dir('benchmark_graph_fp16_1_gpu_tweaked')
FLAGS.batch_size = 256
FLAGS.dtype = 'fp16'
FLAGS.hooks = ['ExamplesPerSecondHook']
self._run_and_report_benchmark()
def benchmark_graph_1_gpu(self):
"""Benchmarks graph 1 gpu."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
FLAGS.batch_size = 128
FLAGS.dtype = 'fp32'
FLAGS.hooks = ['ExamplesPerSecondHook']
self._run_and_report_benchmark()
def benchmark_graph_8_gpu(self):
"""Benchmarks graph 8 gpus."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
FLAGS.batch_size = 128*8
FLAGS.dtype = 'fp32'
FLAGS.hooks = ['ExamplesPerSecondHook']
self._run_and_report_benchmark()
def benchmark_graph_fp16_8_gpu(self):
"""Benchmarks graph fp16 8 gpus."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.model_dir = self._get_model_dir('benchmark_graph_fp16_8_gpu')
FLAGS.batch_size = 256*8
FLAGS.dtype = 'fp16'
FLAGS.hooks = ['ExamplesPerSecondHook']
self._run_and_report_benchmark()
def benchmark_graph_fp16_8_gpu_tweaked(self):
"""Benchmarks graph fp16 8 gpus tweaked."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.tf_gpu_thread_mode = 'gpu_private'
FLAGS.intra_op_parallelism_threads = 1
FLAGS.model_dir = self._get_model_dir('benchmark_graph_fp16_8_gpu_tweaked')
FLAGS.batch_size = 256*8
FLAGS.dtype = 'fp16'
FLAGS.hooks = ['ExamplesPerSecondHook']
self._run_and_report_benchmark()
def _run_and_report_benchmark(self):
start_time_sec = time.time()
stats = imagenet_main.run_imagenet(FLAGS)
wall_time_sec = time.time() - start_time_sec
print(stats)
# Remove values to skip triggering accuracy check.
del stats['eval_results']['accuracy']
del stats['eval_results']['accuracy_top_5']
self._report_benchmark(stats,
wall_time_sec)
class Resnet50EstimatorBenchmarkSynth(Resnet50EstimatorBenchmark):
"""Resnet50 synthetic benchmark tests."""
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
def_flags = {}
def_flags['use_synthetic_data'] = True
def_flags['max_train_steps'] = 110
def_flags['train_epochs'] = 1
super(Resnet50EstimatorBenchmarkSynth, self).__init__(
output_dir=output_dir, default_flags=def_flags)
class Resnet50EstimatorBenchmarkReal(Resnet50EstimatorBenchmark):
"""Resnet50 real data benchmark tests."""
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
def_flags = {}
def_flags['data_dir'] = os.path.join(root_data_dir, IMAGENET_DATA_DIR_NAME)
def_flags['max_train_steps'] = 110
def_flags['train_epochs'] = 1
super(Resnet50EstimatorBenchmarkReal, self).__init__(
output_dir=output_dir, default_flags=def_flags)
class Resnet56EstimatorAccuracy(EstimatorBenchmark):
"""Accuracy tests for Estimator ResNet56."""
local_flags = None
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
"""A benchmark class.
Args:
output_dir: directory where to output e.g. log files
root_data_dir: directory under which to look for dataset
**kwargs: arbitrary named arguments. This is needed to make the
constructor forward compatible in case PerfZero provides more
named arguments before updating the constructor.
"""
flag_methods = [cifar_main.define_cifar_flags]
self.data_dir = os.path.join(root_data_dir, CIFAR_DATA_DIR_NAME)
super(Resnet56EstimatorAccuracy, self).__init__(
output_dir=output_dir, flag_methods=flag_methods)
def benchmark_graph_1_gpu(self):
"""Test layers model with Estimator and distribution strategies."""
self._setup()
flags.FLAGS.num_gpus = 1
flags.FLAGS.data_dir = self.data_dir
flags.FLAGS.batch_size = 128
flags.FLAGS.train_epochs = 182
flags.FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
flags.FLAGS.resnet_size = 56
flags.FLAGS.dtype = 'fp32'
flags.FLAGS.hooks = ['ExamplesPerSecondHook']
self._run_and_report_benchmark()
def benchmark_graph_fp16_1_gpu(self):
"""Test layers FP16 model with Estimator and distribution strategies."""
self._setup()
flags.FLAGS.num_gpus = 1
flags.FLAGS.data_dir = self.data_dir
flags.FLAGS.batch_size = 128
flags.FLAGS.train_epochs = 182
flags.FLAGS.model_dir = self._get_model_dir('benchmark_graph_fp16_1_gpu')
flags.FLAGS.resnet_size = 56
flags.FLAGS.dtype = 'fp16'
flags.FLAGS.hooks = ['ExamplesPerSecondHook']
self._run_and_report_benchmark()
def benchmark_graph_2_gpu(self):
"""Test layers model with Estimator and dist_strat. 2 GPUs."""
self._setup()
flags.FLAGS.num_gpus = 2
flags.FLAGS.data_dir = self.data_dir
flags.FLAGS.batch_size = 128
flags.FLAGS.train_epochs = 182
flags.FLAGS.model_dir = self._get_model_dir('benchmark_graph_2_gpu')
flags.FLAGS.resnet_size = 56
flags.FLAGS.dtype = 'fp32'
flags.FLAGS.hooks = ['ExamplesPerSecondHook']
self._run_and_report_benchmark()
def benchmark_graph_fp16_2_gpu(self):
"""Test layers FP16 model with Estimator and dist_strat. 2 GPUs."""
self._setup()
flags.FLAGS.num_gpus = 2
flags.FLAGS.data_dir = self.data_dir
flags.FLAGS.batch_size = 128
flags.FLAGS.train_epochs = 182
flags.FLAGS.model_dir = self._get_model_dir('benchmark_graph_fp16_2_gpu')
flags.FLAGS.resnet_size = 56
flags.FLAGS.dtype = 'fp16'
flags.FLAGS.hooks = ['ExamplesPerSecondHook']
self._run_and_report_benchmark()
def unit_test(self):
"""A lightweight test that can finish quickly."""
self._setup()
flags.FLAGS.num_gpus = 1
flags.FLAGS.data_dir = self.data_dir
flags.FLAGS.batch_size = 128
flags.FLAGS.train_epochs = 1
flags.FLAGS.model_dir = self._get_model_dir('unit_test')
flags.FLAGS.resnet_size = 8
flags.FLAGS.dtype = 'fp32'
flags.FLAGS.hooks = ['ExamplesPerSecondHook']
self._run_and_report_benchmark()
def _run_and_report_benchmark(self):
"""Executes benchmark and reports result."""
start_time_sec = time.time()
stats = cifar_main.run_cifar(flags.FLAGS)
wall_time_sec = time.time() - start_time_sec
self._report_benchmark(stats,
wall_time_sec,
top_1_min=0.926,
top_1_max=0.938)