diff --git a/tftrt/benchmarking-python/benchmark_args.py b/tftrt/benchmarking-python/benchmark_args.py index 042602843..ceddc7565 100644 --- a/tftrt/benchmarking-python/benchmark_args.py +++ b/tftrt/benchmarking-python/benchmark_args.py @@ -424,8 +424,16 @@ def _validate_args(self, args): "doesn't exist or is not a directory" ) - if args.upload_metrics_endpoint is not None: - raise NotImplementedError("This feature is not yet implemented.") + # yapf: disable + if ( + args.upload_metrics_endpoint is not None and + args.experiment_name is None + ): + raise NotImplementedError( + "--experiment_name must be specified if " + "--upload_metrics_endpoint is set." + ) + # yapf: enable def _post_process_args(self, args): if args.use_synthetic_data: diff --git a/tftrt/benchmarking-python/benchmark_runner.py b/tftrt/benchmarking-python/benchmark_runner.py index 5d9e1986d..cf4056cff 100644 --- a/tftrt/benchmarking-python/benchmark_runner.py +++ b/tftrt/benchmarking-python/benchmark_runner.py @@ -9,6 +9,7 @@ import json import logging as _logging import os +import requests import sys import time @@ -32,6 +33,7 @@ from benchmark_logger import logging from benchmark_utils import DataAggregator +from benchmark_utils import generate_json_metrics from benchmark_utils import print_dict from benchmark_utils import timed_section @@ -140,19 +142,12 @@ def _export_runtime_metrics_to_json(self, metric_dict): if file_path is None: return - metric_dict = { - # Creating a copy to avoid modifying the original - "results": copy.deepcopy(metric_dict), - "runtime_arguments": vars(self._args) - } + json_string = generate_json_metrics( + metrics=metric_dict, + args=vars(self._args), + ) with open(file_path, 'w') as json_f: - json_string = json.dumps( - metric_dict, - default=lambda o: o.__dict__, - sort_keys=True, - indent=4 - ) print(json_string, file=json_f) except Exception as e: @@ -205,6 +200,36 @@ def _export_runtime_metrics_to_csv(self, metric_dict): except Exception as e: logging.error(f"An exception occured during export to CSV: {e}") + def _upload_metrics_to_endpoint(self, metric_dict): + + try: + + if self._args.upload_metrics_endpoint is None: + return + + json_string = generate_json_metrics( + metrics=metric_dict, + args=vars(self._args), + ) + + headers = {"Content-Type": "application/json"} + + response = requests.put( + self._args.upload_metrics_endpoint, + data=json.dumps(data), + headers=headers + ) + response.raise_for_status() + + logging.info( + "Metrics Uploaded to endpoint: " + f"`{self._args.upload_metrics_endpoint}` with experiment name: " + f"`{self._args.experiment_name}`." + ) + + except Exception as e: + logging.error(f"An exception occured during export to JSON: {e}") + def _get_graph_func(self): """Retreives a frozen SavedModel and applies TF-TRT use_tftrt: bool, if true use TensorRT @@ -587,9 +612,12 @@ def start_profiling(): if not self._args.use_synthetic_data: data_aggregator.aggregate_data(y_pred, y) - if (not self._args.debug_performance and - step_idx % self._args.display_every != - 0): # avoids double printing + # yapf: disable + if ( + not self._args.debug_performance and + # avoids double printing + step_idx % self._args.display_every != 0 + ): log_step( step_idx, display_every=1, # force print @@ -602,6 +630,7 @@ def start_profiling(): dequeue_times[-self._args.display_every:] ) * 1000 ) + # yapf: enable if step_idx >= 100: stop_profiling() @@ -668,6 +697,7 @@ def timing_metrics(time_arr, log_prefix): self._export_runtime_metrics_to_json(metrics) self._export_runtime_metrics_to_csv(metrics) + self._upload_metrics_to_endpoint(metrics) def log_value(key, val): if isinstance(val, (int, str)): diff --git a/tftrt/benchmarking-python/benchmark_utils.py b/tftrt/benchmarking-python/benchmark_utils.py index 8c4fd1525..ecde837a4 100644 --- a/tftrt/benchmarking-python/benchmark_utils.py +++ b/tftrt/benchmarking-python/benchmark_utils.py @@ -2,6 +2,7 @@ # Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # -*- coding: utf-8 -*- +import json import time import numpy as np @@ -114,6 +115,15 @@ def _format(tensor): return predictions, expected +def generate_json_metrics(metrics, args): + metric_dict = {"results": metrics, "runtime_arguments": args} + + json_string = json.dumps( + metric_dict, default=lambda o: o.__dict__, sort_keys=True, indent=4 + ) + return json_string + + class DataAggregator(object): def __init__(self, postprocess_model_outputs_fn, args):