-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_test_swin2sr.py
530 lines (473 loc) · 18.3 KB
/
main_test_swin2sr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import argparse
import glob
import os
from collections import OrderedDict
import cv2
import numpy as np
import requests
import torch
from models.network_swin2sr import Swin2SR as net
from utils import util_calculate_psnr_ssim as util
def main(args=None):
"""
Perform the main processing for image super-resolution using the Swin2SR model.
Args:
args (list): List of arguments. If None, the arguments will be parsed from the command line.
Returns:
None
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--task",
type=str,
default="color_dn",
help="classical_sr, lightweight_sr, real_sr, "
"gray_dn, color_dn, jpeg_car, color_jpeg_car",
)
parser.add_argument(
"--scale", type=int, default=1, help="scale factor: 1, 2, 3, 4, 8"
) # 1 for dn and jpeg car
parser.add_argument("--noise", type=int, default=15, help="noise level: 15, 25, 50")
parser.add_argument(
"--jpeg", type=int, default=40, help="scale factor: 10, 20, 30, 40"
)
parser.add_argument(
"--training_patch_size",
type=int,
default=128,
help="patch size used in training Swin2SR. "
"Just used to differentiate two different settings in Table 2 of the paper. "
"Images are NOT tested patch by patch.",
)
parser.add_argument(
"--large_model",
action="store_true",
help="use large model, only provided for real image sr",
)
parser.add_argument(
"--model_path",
type=str,
default="model_zoo/swin2sr/Swin2SR_ClassicalSR_X2_64.pth",
)
parser.add_argument(
"--folder_lq",
type=str,
default=None,
help="input low-quality test image folder",
)
parser.add_argument(
"--folder_gt",
type=str,
default=None,
help="input ground-truth test image folder",
)
parser.add_argument(
"--tile",
type=int,
default=None,
help="Tile size, None for no tile during testing (testing as a whole)",
)
parser.add_argument(
"--tile_overlap", type=int, default=32, help="Overlapping of different tiles"
)
parser.add_argument(
"--save_img_only",
default=False,
action="store_true",
help="save image and do not evaluate",
)
args = parser.parse_args(args) if args is not None else parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# set up model
if os.path.exists(args.model_path):
print(f"loading model from {args.model_path}")
else:
os.makedirs(os.path.dirname(args.model_path), exist_ok=True)
url = "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/{}".format(
os.path.basename(args.model_path)
)
r = requests.get(url, allow_redirects=True)
print(f"downloading model {args.model_path}")
open(args.model_path, "wb").write(r.content)
model = define_model(args)
model.eval()
model = model.to(device)
# setup folder and path
folder, save_dir, border, window_size = setup(args)
os.makedirs(save_dir, exist_ok=True)
test_results = OrderedDict()
test_results["psnr"] = []
test_results["ssim"] = []
test_results["psnr_y"] = []
test_results["ssim_y"] = []
test_results["psnrb"] = []
test_results["psnrb_y"] = []
psnr, ssim, psnr_y, ssim_y, psnrb, psnrb_y = 0, 0, 0, 0, 0, 0
for idx, path in enumerate(sorted(glob.glob(os.path.join(folder, "*")))):
# read image
imgname, img_lq, img_gt = get_image_pair(
args, path
) # image to HWC-BGR, float32
img_lq = np.transpose(
img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)
) # HCW-BGR to CHW-RGB
img_lq = (
torch.from_numpy(img_lq).float().unsqueeze(0).to(device)
) # CHW-RGB to NCHW-RGB
# inference
with torch.no_grad():
# pad input image to be a multiple of window_size
_, _, h_old, w_old = img_lq.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[
:, :, : h_old + h_pad, :
]
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[
:, :, :, : w_old + w_pad
]
output = test(img_lq, model, args, window_size)
if args.task == "compressed_sr":
output = output[0][..., : h_old * args.scale, : w_old * args.scale]
else:
output = output[..., : h_old * args.scale, : w_old * args.scale]
# save image
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
if output.ndim == 3:
# CHW-RGB to HCW-BGR
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
cv2.imwrite(f"{save_dir}/{imgname}.png", output)
# evaluate psnr/ssim/psnr_b
if img_gt is not None:
# float32 to uint8
img_gt = (img_gt * 255.0).round().astype(np.uint8)
img_gt = img_gt[: h_old * args.scale, : w_old * args.scale, ...] # crop gt
img_gt = np.squeeze(img_gt)
psnr = util.calculate_psnr(output, img_gt, crop_border=border)
ssim = util.calculate_ssim(output, img_gt, crop_border=border)
test_results["psnr"].append(psnr)
test_results["ssim"].append(ssim)
if img_gt.ndim == 3: # RGB image
psnr_y = util.calculate_psnr(
output, img_gt, crop_border=border, test_y_channel=True
)
ssim_y = util.calculate_ssim(
output, img_gt, crop_border=border, test_y_channel=True
)
test_results["psnr_y"].append(psnr_y)
test_results["ssim_y"].append(ssim_y)
if args.task in ["jpeg_car", "color_jpeg_car"]:
psnrb = util.calculate_psnrb(
output, img_gt, crop_border=border, test_y_channel=False
)
test_results["psnrb"].append(psnrb)
if args.task in ["color_jpeg_car"]:
psnrb_y = util.calculate_psnrb(
output, img_gt, crop_border=border, test_y_channel=True
)
test_results["psnrb_y"].append(psnrb_y)
print(
"Testing {:d} {:20s} - PSNR: {:.2f} dB; SSIM: {:.4f}; PSNRB: {:.2f} dB;"
"PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}; PSNRB_Y: {:.2f} dB.".format(
idx, imgname, psnr, ssim, psnrb, psnr_y, ssim_y, psnrb_y
)
)
else:
print("Testing {:d} {:20s}".format(idx, imgname))
# summarize psnr/ssim
if img_gt is not None:
ave_psnr = sum(test_results["psnr"]) / len(test_results["psnr"])
ave_ssim = sum(test_results["ssim"]) / len(test_results["ssim"])
print(
"\n{} \n-- Average PSNR/SSIM(RGB): {:.2f} dB; {:.4f}".format(
save_dir, ave_psnr, ave_ssim
)
)
if img_gt.ndim == 3:
ave_psnr_y = sum(test_results["psnr_y"]) / len(test_results["psnr_y"])
ave_ssim_y = sum(test_results["ssim_y"]) / len(test_results["ssim_y"])
print(
"-- Average PSNR_Y/SSIM_Y: {:.2f} dB; {:.4f}".format(
ave_psnr_y, ave_ssim_y
)
)
if args.task in ["jpeg_car", "color_jpeg_car"]:
ave_psnrb = sum(test_results["psnrb"]) / len(test_results["psnrb"])
print("-- Average PSNRB: {:.2f} dB".format(ave_psnrb))
if args.task in ["color_jpeg_car"]:
ave_psnrb_y = sum(test_results["psnrb_y"]) / len(
test_results["psnrb_y"]
)
print("-- Average PSNRB_Y: {:.2f} dB".format(ave_psnrb_y))
def define_model(args):
"""
Define a model based on the specified task.
Args:
args: An object containing the task-specific configuration parameters.
Returns:
torch.nn.Module: The defined model.
Notes:
- This method defines and initializes a model based on the specified task.
- The returned model is an instance of `torch.nn.Module` or its subclass.
Examples:
# Define a model for classical image super-resolution
args = Namespace(task='classical_sr', scale=4, training_patch_size=256)
model = define_model(args)
# Define a model for lightweight image super-resolution
args = Namespace(task='lightweight_sr', scale=2)
model = define_model(args)
# Define a model for real-world image super-resolution
args = Namespace(task='real_sr', scale=3, large_model=True)
model = define_model(args)
"""
# 001 classical image sr
if args.task == "classical_sr":
model = net(
upscale=args.scale,
in_chans=3,
img_size=args.training_patch_size,
window_size=8,
img_range=1.0,
depths=[6, 6, 6, 6, 6, 6],
embed_dim=180,
num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2,
upsampler="pixelshuffle",
resi_connection="1conv",
)
param_key_g = "params"
# 002 lightweight image sr
# use 'pixelshuffledirect' to save parameters
elif args.task in ["lightweight_sr"]:
model = net(
upscale=args.scale,
in_chans=3,
img_size=64,
window_size=8,
img_range=1.0,
depths=[6, 6, 6, 6],
embed_dim=60,
num_heads=[6, 6, 6, 6],
mlp_ratio=2,
upsampler="pixelshuffledirect",
resi_connection="1conv",
)
param_key_g = "params"
elif args.task == "compressed_sr":
model = net(
upscale=args.scale,
in_chans=3,
img_size=args.training_patch_size,
window_size=8,
img_range=1.0,
depths=[6, 6, 6, 6, 6, 6],
embed_dim=180,
num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2,
upsampler="pixelshuffle_aux",
resi_connection="1conv",
)
param_key_g = "params"
# 003 real-world image sr
elif args.task == "real_sr":
if not args.large_model:
# use 'nearest+conv' to avoid block artifacts
model = net(
upscale=args.scale,
in_chans=3,
img_size=64,
window_size=8,
img_range=1.0,
depths=[6, 6, 6, 6, 6, 6],
embed_dim=180,
num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2,
upsampler="nearest+conv",
resi_connection="1conv",
)
else:
# larger model size; use '3conv' to save parameters and memory; use ema for GAN training
model = net(
upscale=args.scale,
in_chans=3,
img_size=64,
window_size=8,
img_range=1.0,
depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
embed_dim=240,
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
mlp_ratio=2,
upsampler="nearest+conv",
resi_connection="3conv",
)
param_key_g = "params_ema"
# 006 grayscale JPEG compression artifact reduction
# use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1
elif args.task == "jpeg_car":
model = net(
upscale=1,
in_chans=1,
img_size=126,
window_size=7,
img_range=255.0,
depths=[6, 6, 6, 6, 6, 6],
embed_dim=180,
num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2,
upsampler="",
resi_connection="1conv",
)
param_key_g = "params"
# 006 color JPEG compression artifact reduction
# use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1
elif args.task == "color_jpeg_car":
model = net(
upscale=1,
in_chans=3,
img_size=126,
window_size=7,
img_range=255.0,
depths=[6, 6, 6, 6, 6, 6],
embed_dim=180,
num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2,
upsampler="",
resi_connection="1conv",
)
param_key_g = "params"
pretrained_model = torch.load(args.model_path)
model.load_state_dict(
pretrained_model[param_key_g]
if param_key_g in pretrained_model
else pretrained_model,
strict=True,
)
return model
def setup(args):
# 001 classical image sr/ 002 lightweight image sr
if args.task in ["classical_sr", "lightweight_sr", "compressed_sr"]:
save_dir = f"results/swin2sr_{args.task}_x{args.scale}"
folder = args.folder_lq if args.save_img_only else args.folder_gt
border = args.scale
window_size = 8
# 003 real-world image sr
elif args.task in ["real_sr"]:
save_dir = f"results/swin2sr_{args.task}_x{args.scale}"
if args.large_model:
save_dir += "_large"
folder = args.folder_lq
border = 0
window_size = 8
# 006 JPEG compression artifact reduction
elif args.task in ["jpeg_car", "color_jpeg_car"]:
save_dir = f"results/swin2sr_{args.task}_jpeg{args.jpeg}"
folder = args.folder_gt
border = 0
window_size = 7
return folder, save_dir, border, window_size
def get_image_pair(args, path):
"""
Load and prepare the input image pair (low-quality and ground truth) based on the specified task.
Args:
args (argparse.Namespace): Parsed command line arguments.
path (str): Path to the input image file.
Returns:
tuple: A tuple containing the image name, low-quality image (img_lq), and ground truth image (img_gt).
"""
(imgname, imgext) = os.path.splitext(os.path.basename(path))
# 001 classical image sr/ 002 lightweight image sr (load lq-gt image pairs)
if args.task in ["classical_sr", "lightweight_sr"]:
if args.save_img_only:
img_gt = None
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.0
else:
img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.0
img_lq = (
cv2.imread(
f"{args.folder_lq}/{imgname}x{args.scale}{imgext}", cv2.IMREAD_COLOR
).astype(np.float32)
/ 255.0
)
elif args.task in ["compressed_sr"]:
if args.save_img_only:
img_gt = None
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.0
else:
img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.0
img_lq = (
cv2.imread(f"{args.folder_lq}/{imgname}.jpg", cv2.IMREAD_COLOR).astype(
np.float32
)
/ 255.0
)
# 003 real-world image sr (load lq image only)
elif args.task in ["real_sr", "lightweight_sr_infer"]:
img_gt = None
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.0
# 006 grayscale JPEG compression artifact reduction (load gt image and generate lq image on-the-fly)
elif args.task in ["jpeg_car"]:
img_gt = cv2.imread(path, cv2.IMREAD_UNCHANGED)
if img_gt.ndim != 2:
img_gt = util.bgr2ycbcr(img_gt, y_only=True)
result, encimg = cv2.imencode(
".jpg", img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg]
)
img_lq = cv2.imdecode(encimg, 0)
img_gt = np.expand_dims(img_gt, axis=2).astype(np.float32) / 255.0
img_lq = np.expand_dims(img_lq, axis=2).astype(np.float32) / 255.0
# 006 JPEG compression artifact reduction (load gt image and generate lq image on-the-fly)
elif args.task in ["color_jpeg_car"]:
img_gt = cv2.imread(path)
result, encimg = cv2.imencode(
".jpg", img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg]
)
img_lq = cv2.imdecode(encimg, 1)
img_gt = img_gt.astype(np.float32) / 255.0
img_lq = img_lq.astype(np.float32) / 255.0
return imgname, img_lq, img_gt
def test(img_lq, model, args, window_size):
"""
Perform testing on the input image using the specified model.
Args:
img_lq (torch.Tensor): Low-quality input image.
model: The trained model used for testing.
args (argparse.Namespace): Parsed command line arguments.
window_size (int): Size of the sliding window used for tiled testing.
Returns:
torch.Tensor: Output high-quality image result.
"""
if args.tile is None:
# test the image as a whole
output = model(img_lq)
else:
# test the image tile by tile
b, c, h, w = img_lq.size()
tile = min(args.tile, h, w)
assert tile % window_size == 0, "tile size should be a multiple of window_size"
tile_overlap = args.tile_overlap
sf = args.scale
stride = tile - tile_overlap
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
E = torch.zeros(b, c, h * sf, w * sf).type_as(img_lq)
W = torch.zeros_like(E)
for h_idx in h_idx_list:
for w_idx in w_idx_list:
in_patch = img_lq[..., h_idx : h_idx + tile, w_idx : w_idx + tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
E[
...,
h_idx * sf : (h_idx + tile) * sf,
w_idx * sf : (w_idx + tile) * sf,
].add_(out_patch)
W[
...,
h_idx * sf : (h_idx + tile) * sf,
w_idx * sf : (w_idx + tile) * sf,
].add_(out_patch_mask)
output = E.div_(W)
return output
if __name__ == "__main__":
main()