forked from rrmina/fast-neural-style-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
experimental.py
429 lines (373 loc) · 13.6 KB
/
experimental.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import torch
import torch.nn as nn
class TransformerNetworkV2(nn.Module):
"""
Feedforward Transformation NetworkV2
- No Tanh
+ Using Fully Pre-activated Residual Layers
"""
def __init__(self):
super(TransformerNetworkV2, self).__init__()
self.ConvBlock = nn.Sequential(
ConvLayer(3, 32, 9, 1),
nn.ReLU(),
ConvLayer(32, 64, 3, 2),
nn.ReLU(),
ConvLayer(64, 128, 3, 2),
nn.ReLU()
)
self.ResidualBlock = nn.Sequential(
ResidualLayerV2(128, 3),
ResidualLayerV2(128, 3),
ResidualLayerV2(128, 3),
ResidualLayerV2(128, 3),
ResidualLayerV2(128, 3)
)
self.DeconvBlock = nn.Sequential(
DeconvLayer(128, 64, 3, 2, 1),
nn.ReLU(),
DeconvLayer(64, 32, 3, 2, 1),
nn.ReLU(),
ConvLayer(32, 3, 9, 1, norm="None")
)
def forward(self, x):
x = self.ConvBlock(x)
x = self.ResidualBlock(x)
out = self.DeconvBlock(x)
return out
class TransformerResNextNetwork(nn.Module):
"""
Feedforward Transformation Network - ResNeXt
- No Tanh
+ ResNeXt Layer
"""
def __init__(self):
super(TransformerResNextNetwork, self).__init__()
self.ConvBlock = nn.Sequential(
ConvLayer(3, 32, 9, 1),
nn.ReLU(),
ConvLayer(32, 64, 3, 2),
nn.ReLU(),
ConvLayer(64, 128, 3, 2),
nn.ReLU()
)
self.ResidualBlock = nn.Sequential(
ResNextLayer(128, [64, 64, 128], kernel_size=3),
ResNextLayer(128, [64, 64, 128], kernel_size=3),
ResNextLayer(128, [64, 64, 128], kernel_size=3),
ResNextLayer(128, [64, 64, 128], kernel_size=3),
ResNextLayer(128, [64, 64, 128], kernel_size=3)
)
self.DeconvBlock = nn.Sequential(
DeconvLayer(128, 64, 3, 2, 1),
nn.ReLU(),
DeconvLayer(64, 32, 3, 2, 1),
nn.ReLU(),
ConvLayer(32, 3, 9, 1, norm="None")
)
def forward(self, x):
x = self.ConvBlock(x)
x = self.ResidualBlock(x)
out = self.DeconvBlock(x)
return out
class TransformerResNextNetwork_Pruned(nn.Module):
"""
Feedforward Transformation Network - ResNeXt
- No Tanh
+ ResNeXt Layer
+ Pruned
Reference: https://heartbeat.fritz.ai/creating-a-17kb-style-transfer-model-with-layer-pruning-and-quantization-864d7cc53693
"""
def __init__(self, alpha=1.0):
super(TransformerResNextNetwork_Pruned, self).__init__()
a = alpha
self.ConvBlock = nn.Sequential(
ConvLayer(3, int(a*32), 9, 1),
nn.ReLU(),
ConvLayer(int(a*32), int(a*32), 3, 2),
nn.ReLU(),
ConvLayer(int(a*32), int(a*32), 3, 2),
nn.ReLU()
)
self.ResidualBlock = nn.Sequential(
ResNextLayer(int(a*32), [int(a*16), int(a*16), int(a*32)], kernel_size=3),
ResNextLayer(int(a*32), [int(a*16), int(a*16), int(a*32)], kernel_size=3),
ResNextLayer(int(a*32), [int(a*16), int(a*16), int(a*32)], kernel_size=3),
)
self.DeconvBlock = nn.Sequential(
DeconvLayer(int(a*32), int(a*32), 3, 2, 1),
nn.ReLU(),
DeconvLayer(int(a*32), int(a*32), 3, 2, 1),
nn.ReLU(),
ConvLayer(int(a*32), 3, 9, 1, norm="None")
)
def forward(self, x):
x = self.ConvBlock(x)
x = self.ResidualBlock(x)
out = self.DeconvBlock(x)
return out
class TransformerNetworkDenseNet(nn.Module):
"""
Feedforward Transformer Network using DenseNet Block instead of Residual Block
"""
def __init__(self):
super(TransformerNetworkDenseNet, self).__init__()
self.ConvBlock = nn.Sequential(
ConvLayerNB(3, 32, 9, 1),
nn.ReLU(),
ConvLayerNB(32, 64, 3, 2),
nn.ReLU(),
ConvLayerNB(64, 128, 3, 2),
nn.ReLU()
)
self.DenseBlock = nn.Sequential(
NormReluConv(128, 64, 1, 1),
DenseLayerBottleNeck(64, 16),
DenseLayerBottleNeck(80, 16),
DenseLayerBottleNeck(96, 16),
DenseLayerBottleNeck(112, 16)
)
self.DeconvBlock = nn.Sequential(
DeconvLayer(128, 64, 3, 2, 1),
nn.ReLU(),
DeconvLayer(64, 32, 3, 2, 1),
nn.ReLU(),
ConvLayer(32, 3, 9, 1, norm="None")
)
def forward(self, x):
x = self.ConvBlock(x)
x = self.DenseBlock(x)
out = self.DeconvBlock(x)
return out
class TransformerNetworkUNetDenseNetResNet(nn.Module):
"""
Feedforward Transformer Network using DenseNet Block instead of Residual Block
"""
def __init__(self):
super(TransformerNetworkUNetDenseNetResNet, self).__init__()
self.C1 = ConvLayerNB(3, 32, 9, 1)
self.RC1 = nn.ReLU()
self.C2 = ConvLayerNB(32, 64, 3, 2)
self.RC2 = nn.ReLU()
self.C3 = ConvLayerNB(64, 128, 3, 2)
self.RC3 = nn.ReLU()
self.DenseBlock = nn.Sequential(
NormReluConv(128, 64, 1, 1),
DenseLayerBottleNeck(64, 16),
DenseLayerBottleNeck(80, 16),
DenseLayerBottleNeck(96, 16),
DenseLayerBottleNeck(112, 16)
)
self.RD0 = nn.ReLU()
self.D1 = UpsampleConvLayer(128, 64, 3, 1, 2)
self.RD1 = nn.ReLU()
self.D2 = UpsampleConvLayer(64, 32, 3, 1, 2)
self.RD2 = nn.ReLU()
self.D3 = ConvLayerNB(32, 3, 9, 1, norm="None")
def forward(self, x):
# Decoder
x = self.RC1(self.C1(x))
i1 = x
x = self.RC2(self.C2(x))
i2 = x
x = self.RC3(self.C3(x))
i3 = x
# Dense Block
x = self.DenseBlock(x)
if (x.shape != i3.shape):
sh = i3.shape
x = x[:sh[0], :sh[1], :sh[2], :sh[3]] + i3
else:
x = x + i3
x = self.RD0(x)
# Encoder
x = self.D1(x)
if (x.shape != i2.shape):
sh = i2.shape
x = x[:sh[0], :sh[1], :sh[2], :sh[3]] + i2
else:
x = x + i2
x = self.RD1(x)
x = self.D2(x)
if (x.shape != i1.shape):
sh = i1.shape
x = x[:sh[0], :sh[1], :sh[2], :sh[3]] + i1
else:
x = x + i1
x = self.RD2(x)
x = self.D3(x)
return x
class DenseLayerBottleNeck(nn.Module):
"""
NORM - RELU - CONV1 -> NORM - RELU - CONV3
out_channels = Growth Rate
"""
def __init__(self, in_channels, out_channels):
super(DenseLayerBottleNeck, self).__init__()
self.conv1 = NormLReluConv(in_channels, 4*out_channels, 1, 1)
self.conv3 = NormLReluConv(4*out_channels, out_channels, 3, 1)
def forward(self, x):
out = self.conv3(self.conv1(x))
out = torch.cat((x, out), 1)
return out
class ConvLayerNB(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, norm="instance"):
super(ConvLayerNB, self).__init__()
# Padding Layers
padding_size = kernel_size // 2
self.reflection_pad = nn.ReflectionPad2d(padding_size)
# Convolution Layer
self.conv_layer = nn.Conv2d(in_channels, out_channels, kernel_size, stride, bias=False)
# Normalization Layers
self.norm_type = norm
if (norm=="instance"):
self.norm_layer = nn.InstanceNorm2d(out_channels, affine=True)
elif (norm=="batch"):
self.norm_layer = nn.BatchNorm2d(out_channels, affine=True)
def forward(self, x):
x = self.reflection_pad(x)
x = self.conv_layer(x)
if (self.norm_type=="None"):
out = x
else:
out = self.norm_layer(x)
return out
class ResidualLayerV2(nn.Module):
"""
Identity Mappings in Deep Residual Networks
Full pre-activation
https://arxiv.org/abs/1603.05027
"""
def __init__(self, channels=128, kernel_size=3):
super(ResidualLayerV2, self).__init__()
self.conv1 = NormReluConv(channels, channels, kernel_size, stride=1)
self.conv2 = NormReluConv(channels, channels, kernel_size, stride=1)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.conv2(out)
out = out + identity
return out
class ResNextLayer(nn.Module):
"""
Aggregated Residual Transformations for Deep Neural Networks
Equal to better performance with 10x less parameters
https://arxiv.org/abs/1611.05431
"""
def __init__(self, in_ch=128, channels=[64, 64, 128], kernel_size=3):
super(ResNextLayer, self).__init__()
ch1, ch2, ch3 = channels
self.conv1 = ConvLayer(in_ch, ch1, kernel_size=1, stride=1)
self.relu1 = nn.ReLU()
self.conv2 = ConvLayer(ch1, ch2, kernel_size=kernel_size, stride=1)
self.relu2 = nn.ReLU()
self.conv3 = ConvLayer(ch2, ch3, kernel_size=1, stride=1)
def forward(self, x):
identity = x
out = self.relu1(self.conv1(x))
out = self.relu2(self.conv2(out))
out = self.conv3(out)
out = out + identity
return out
class NormReluConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, norm="instance"):
super(NormReluConv, self).__init__()
# Normalization Layers
if (norm=="instance"):
self.norm_layer = nn.InstanceNorm2d(in_channels, affine=True)
elif (norm=="batch"):
self.norm_layer = nn.BatchNorm2d(in_channels, affine=True)
# ReLU Layer
self.relu_layer = nn.ReLU()
# Padding Layers
padding_size = kernel_size // 2
self.reflection_pad = nn.ReflectionPad2d(padding_size)
# Convolution Layer
self.conv_layer = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
def forward(self, x):
x = self.norm_layer(x)
x = self.relu_layer(x)
x = self.reflection_pad(x)
x = self.conv_layer(x)
return x
class NormLReluConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, norm="instance"):
super(NormLReluConv, self).__init__()
# Normalization Layers
if (norm=="instance"):
self.norm_layer = nn.InstanceNorm2d(in_channels, affine=True)
elif (norm=="batch"):
self.norm_layer = nn.BatchNorm2d(in_channels, affine=True)
# ReLU Layer
self.relu_layer = nn.ReLU()
# Padding Layers
padding_size = kernel_size // 2
self.reflection_pad = nn.ReflectionPad2d(padding_size)
# Convolution Layer
self.conv_layer = nn.Conv2d(in_channels, out_channels, kernel_size, stride, bias=False)
def forward(self, x):
x = self.norm_layer(x)
x = self.relu_layer(x)
x = self.reflection_pad(x)
x = self.conv_layer(x)
return x
class ConvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, norm="instance"):
super(ConvLayer, self).__init__()
# Padding Layers
padding_size = kernel_size // 2
self.reflection_pad = nn.ReflectionPad2d(padding_size)
# Convolution Layer
self.conv_layer = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
# Normalization Layers
self.norm_type = norm
if (norm=="instance"):
self.norm_layer = nn.InstanceNorm2d(out_channels, affine=True)
elif (norm=="batch"):
self.norm_layer = nn.BatchNorm2d(out_channels, affine=True)
def forward(self, x):
x = self.reflection_pad(x)
x = self.conv_layer(x)
if (self.norm_type=="None"):
out = x
else:
out = self.norm_layer(x)
return out
class UpsampleConvLayer(torch.nn.Module):
"""UpsampleConvLayer
Upsamples the input and then does a convolution. This method gives better results
compared to ConvTranspose2d.
ref: http://distill.pub/2016/deconv-checkerboard/
"""
def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None):
super(UpsampleConvLayer, self).__init__()
self.upsample = upsample
reflection_padding = kernel_size // 2
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride)
def forward(self, x):
x_in = x
if self.upsample:
x_in = torch.nn.functional.interpolate(x_in, mode='nearest', scale_factor=self.upsample)
out = self.reflection_pad(x_in)
out = self.conv2d(out)
return out
class DeconvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, output_padding, norm="instance"):
super(DeconvLayer, self).__init__()
# Transposed Convolution
padding_size = kernel_size // 2
self.conv_transpose = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding_size, output_padding)
# Normalization Layers
self.norm_type = norm
if (norm=="instance"):
self.norm_layer = nn.InstanceNorm2d(out_channels, affine=True)
elif (norm=="batch"):
self.norm_layer = nn.BatchNorm2d(out_channels, affine=True)
def forward(self, x):
x = self.conv_transpose(x)
if (self.norm_type=="None"):
out = x
else:
out = self.norm_layer(x)
return out