-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.stan
63 lines (63 loc) · 1.97 KB
/
model.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
functions {
real rpdr_outcome_lp(vector ability, int[] episode_rank){
real out = 0;
int first_in_group = 1;
for (contestant in 1:rows(ability)){
if ((contestant > 1)
&& (episode_rank[contestant] > episode_rank[contestant-1])){
first_in_group = contestant;
}
if (episode_rank[contestant] < max(episode_rank)){
out += ability[contestant] - log_sum_exp(ability[first_in_group:]);
}
}
return out;
}
}
data {
int<lower=1> N; // Number of episode participations
int<lower=1> K; // Number of predictors
int<lower=1> E; // Number of episodes
int<lower=1> C; // Number of contestants
int<lower=1> N_survey; // Number of surveys
matrix[C, K] X; // Contestant level predictors
// episode data
int<lower=1> N_episode_contestant[E];
int<lower=1,upper=6> episode_rank[N];
int<lower=1,upper=C> contestant[N];
// survey data
int<lower=1,upper=C> survey_contestant[N_survey];
int<lower=1,upper=C> survey_opponent[N_survey];
int<lower=1> survey_count[N_survey];
int<lower=0> survey_wins[N_survey];
// config
int<lower=0,upper=1> use_survey;
int<lower=0,upper=1> use_episodes;
}
parameters {
vector[C] ability_z;
real<lower=0> sigma_ability;
vector[K] beta;
}
transformed parameters {
vector[C] ability = X * beta + ability_z * sigma_ability;
}
model {
int pos = 1;
// priors
ability_z ~ normal(0, 1);
beta ~ normal(0, 1);
sigma_ability ~ normal(0, 1);
// likelihood
if (use_survey == 1){
survey_wins ~ binomial_logit(survey_count, ability[survey_contestant] - ability[survey_opponent]);
}
if (use_episodes == 1){
for (e in 1:E){
int contestants[N_episode_contestant[e]] = segment(contestant, pos, N_episode_contestant[e]);
int episode_ranks[N_episode_contestant[e]] = segment(episode_rank, pos, N_episode_contestant[e]);
target += rpdr_outcome_lp(ability[contestants], episode_ranks);
pos += N_episode_contestant[e];
}
}
}