-
-
Notifications
You must be signed in to change notification settings - Fork 103
/
polyline.go
262 lines (233 loc) · 6.43 KB
/
polyline.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
package canvas
import "math"
// Polyline defines a list of points in 2D space that form a polyline. If the last coordinate equals the first coordinate, we assume the polyline to close itself.
type Polyline struct {
coords []Point
}
// PolylineFromPath returns a polyline from the given path by approximating it by linear line segments, i.e. by flattening.
func PolylineFromPath(p *Path) *Polyline {
return &Polyline{p.Flatten(Tolerance).Coords()}
}
// PolylineFromPathCoords returns a polyline from the given path from each of the start/end coordinates of the segments, i.e. converting all non-linear segments to linear ones.
func PolylineFromPathCoords(p *Path) *Polyline {
return &Polyline{p.Coords()}
}
// Empty returns true if the polyline is empty.
func (p *Polyline) Empty() bool {
return len(p.coords) < 2
}
// Len returns the number of segments.
func (p *Polyline) Len() int {
if p.Empty() {
return 0
}
return len(p.coords)
}
// Add adds a new point to the polyline.
func (p *Polyline) Add(x, y float64) *Polyline {
p.coords = append(p.coords, Point{x, y})
return p
}
// Close adds a new point equal to the first, closing the polyline.
func (p *Polyline) Close() *Polyline {
if 0 < len(p.coords) {
p.coords = append(p.coords, p.coords[0])
}
return p
}
// Closed returns true if the last point coincides with the first.
func (p *Polyline) Closed() bool {
return 0 < len(p.coords) && p.coords[0].Equals(p.coords[len(p.coords)-1])
}
// Coords returns the list of coordinates of the polyline.
func (p *Polyline) Coords() []Point {
return p.coords
}
// ToPath converts the polyline to a path. If the last coordinate equals the first one, we close the path.
func (p *Polyline) ToPath() *Path {
if len(p.coords) < 2 {
return &Path{}
}
q := &Path{}
q.MoveTo(p.coords[0].X, p.coords[0].Y)
for _, coord := range p.coords[1 : len(p.coords)-1] {
q.LineTo(coord.X, coord.Y)
}
if p.coords[0].Equals(p.coords[len(p.coords)-1]) {
q.Close()
} else {
q.LineTo(p.coords[len(p.coords)-1].X, p.coords[len(p.coords)-1].Y)
}
return q
}
// FillCount returns the number of times the test point is enclosed by the polyline. Counter clockwise enclosures are counted positively and clockwise enclosures negatively.
func (p *Polyline) FillCount(x, y float64) int {
test := Point{x, y}
count := 0
prevCoord := p.coords[0]
for _, coord := range p.coords[1:] {
// see https://wrf.ecse.rpi.edu//Research/Short_Notes/pnpoly.html
if (test.Y < coord.Y) != (test.Y < prevCoord.Y) &&
test.X < (prevCoord.X-coord.X)*(test.Y-coord.Y)/(prevCoord.Y-coord.Y)+coord.X {
if prevCoord.Y < coord.Y {
count--
} else {
count++
}
}
prevCoord = coord
}
return count
}
// Interior is true when the point (x,y) is in the interior of the path, i.e. gets filled. This depends on the FillRule.
func (p *Polyline) Interior(x, y float64, fillRule FillRule) bool {
fillCount := p.FillCount(x, y)
if fillRule == NonZero {
return fillCount != 0
}
return fillCount%2 != 0
}
// Area returns the polygon's signed area.
func (p *Polyline) Area() float64 {
n := len(p.coords)
if p.Closed() {
n--
}
a := 0.0
for i := 0; i < n; i++ {
a += p.coords[i].PerpDot(p.coords[(i+1)%len(p.coords)])
}
return math.Abs(a / 2.0)
}
// Centroid returns the center point of the polygon.
func (p *Polyline) Centroid() Point {
n := len(p.coords)
if p.Closed() {
n--
}
if n == 0 {
return Point{}
} else if n == 1 {
return p.coords[0]
} else if n == 2 {
return p.coords[0].Interpolate(p.coords[1], 0.5)
}
c := Point{}
for i := 0; i < n; i++ {
f := p.coords[i].PerpDot(p.coords[(i+1)%len(p.coords)])
c = c.Add(p.coords[i].Add(p.coords[(i+1)%len(p.coords)]).Mul(f))
}
return c.Div(6.0 * p.Area())
}
// Smoothen returns a new path that smoothens out a path using cubic Béziers between all the path points. It makes sure that the curvature is smooth along the whole path. If the path is closed it will be smooth between start and end segments too.
func (p *Polyline) Smoothen() *Path {
K := p.coords
if len(K) < 2 {
return &Path{}
} else if len(K) == 2 { // there are only two coordinates, that's a straight line
if p.Closed() {
return &Path{}
}
q := &Path{}
q.MoveTo(K[0].X, K[0].Y)
q.LineTo(K[1].X, K[1].Y)
return q
}
var p1, p2 []Point
closed := p.Closed()
if closed {
// see https://www.jacos.nl/jacos_html/spline/circular/index.html
n := len(K) - 1
p1 = make([]Point, n+1)
p2 = make([]Point, n)
a := make([]float64, n)
b := make([]float64, n)
c := make([]float64, n)
d := make([]Point, n)
for i := 0; i < n; i++ {
a[i] = 1.0
b[i] = 4.0
c[i] = 1.0
d[i] = K[i].Mul(4.0).Add(K[i+1].Mul(2.0))
}
lc := make([]float64, n)
lc[0] = a[0]
lr := c[n-1]
for i := 0; i < n-3; i++ {
m := a[i+1] / b[i]
b[i+1] -= m * c[i]
d[i+1] = d[i+1].Sub(d[i].Mul(m))
lc[i+1] = -m * lc[i]
m = lr / b[i]
b[n-1] -= m * lc[i]
lr = -m * c[i]
d[n-1] = d[n-1].Sub(d[i].Mul(m))
}
i := n - 3
m := a[i+1] / b[i]
b[i+1] -= m * c[i]
d[i+1] = d[i+1].Sub(d[i].Mul(m))
c[i+1] -= m * lc[i]
m = lr / b[i]
b[n-1] -= m * lc[i]
a[n-1] -= m * c[i]
d[n-1] = d[n-1].Sub(d[i].Mul(m))
i = n - 2
m = a[i+1] / b[i]
b[i+1] -= m * c[i]
d[i+1] = d[i+1].Sub(d[i].Mul(m))
p1[n-1] = d[n-1].Div(b[n-1])
lc[n-2] = 0.0
for i := n - 2; i >= 0; i-- {
p1[i] = d[i].Sub(p1[i+1].Mul(c[i])).Sub(p1[n-1].Mul(lc[i])).Div(b[i])
}
p1[n] = p1[0]
for i := 0; i < n; i++ {
p2[i] = K[i+1].Mul(2.0).Sub(p1[i+1])
}
} else {
// see https://www.particleincell.com/2012/bezier-splines/
n := len(K) - 1
p1 = make([]Point, n)
p2 = make([]Point, n)
a := make([]float64, n)
b := make([]float64, n)
c := make([]float64, n)
d := make([]Point, n)
b[0] = 2.0
c[0] = 1.0
d[0] = K[0].Add(K[1].Mul(2.0))
for i := 1; i < n-1; i++ {
a[i] = 1.0
b[i] = 4.0
c[i] = 1.0
d[i] = K[i].Mul(4.0).Add(K[i+1].Mul(2.0))
}
a[n-1] = 2.0
b[n-1] = 7.0
d[n-1] = K[n].Add(K[n-1].Mul(8.0))
// solve with tridiagonal matrix algorithm
for i := 1; i < n; i++ {
w := a[i] / b[i-1]
b[i] -= w * c[i-1]
d[i] = d[i].Sub(d[i-1].Mul(w))
}
p1[n-1] = d[n-1].Div(b[n-1])
for i := n - 2; i >= 0; i-- {
p1[i] = d[i].Sub(p1[i+1].Mul(c[i])).Div(b[i])
}
for i := 0; i < n-1; i++ {
p2[i] = K[i+1].Mul(2.0).Sub(p1[i+1])
}
p2[n-1] = K[n].Add(p1[n-1]).Mul(0.5)
}
q := &Path{}
q.MoveTo(K[0].X, K[0].Y)
for i := 0; i < len(K)-1; i++ {
q.CubeTo(p1[i].X, p1[i].Y, p2[i].X, p2[i].Y, K[i+1].X, K[i+1].Y)
}
if closed {
q.Close()
}
return q
}