-
Notifications
You must be signed in to change notification settings - Fork 2
/
temp.html
144 lines (104 loc) · 4.94 KB
/
temp.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
<!-- banners -->
<div id="carouselExampleIndicators" class="carousel slide carousel-fade" data-bs-ride="carousel">
<div class="carousel-inner" id="carousel-inner">
</div>
<button class="carousel-control-prev" type="button" data-bs-target="#carouselExampleIndicators" data-bs-slide="prev">
<span class="carousel-control-prev-icon" aria-hidden="true"></span>
<span class="visually-hidden">Previous</span>
</button>
<button class="carousel-control-next" type="button" data-bs-target="#carouselExampleIndicators" data-bs-slide="next">
<span class="carousel-control-next-icon" aria-hidden="true"></span>
<span class="visually-hidden">Next</span>
</button>
</div>
<!-- main text -->
<div class="text-center mt-5">
<h2>Welcome to the</h2>
<h1>Technion Computational MRI Lab</h1>
<p class="lead m-5">
We are improving patient care through better characterization of the underlying physiological and structural factors in human diseases by developing novel deep-learning-based methods for MRI acquisition and analysis.
</p>
</div>
<hr class="divider" />
<!-- research -->
<div id="research">
<h2 class="text-center mt-5" id="research-header">Research Topics</h2>
<section class="research py-2">
<svg id="research-network"></svg>
<div class="row">
<div class="col-lg-4" id="clinical">
<div class="card mb-5 mb-lg-0">
<div class="card-body">
<h5 class="card-title text-muted text-uppercase text-center">Clinical Domain</h5>
<div class="clinical-subtopics">
<hr>
<ul>
<li id="fetal-imaging"> Fetal Imaging </li>
<li id="cancer"> Cancer </li>
<li id="diabetes"> Diabetes </li>
<li id="chrons"> Chron's Disease </li>
<li id="cardiac"> Cardiac </li>
</ul>
</div>
<div class="d-grid">
<a href="#" class="btn btn-primary text-uppercase">Read More</a>
</div>
</div>
</div>
</div>
<div class="col-lg-4" id="imaging">
<div class="card mb-5 mb-lg-0">
<div class="card-body">
<h5 class="card-title text-muted text-uppercase text-center">Imaging Technologies</h5>
<div class="imaging-subtopics">
<hr>
<ul>
<li> Qualitative MRI </li>
<li> Radiology Reports </li>
<li> T1/T2 Mapping </li>
<li> DWI </li>
<li> Anatomical Imaging </li>
<li> Ultrasound </li>
<li> PET/CT </li>
<li> Whole Slide Imaging </li>
<li> MRI </li>
</ul>
</div>
<div class="d-grid">
<a href="#" class="btn btn-primary text-uppercase">Read More</a>
</div>
</div>
</div>
</div>
<div class="col-lg-4" id="algorithmic">
<div class="card mb-5 mb-lg-0">
<div class="card-body">
<h5 class="card-title text-muted text-uppercase text-center">Algorithmic Technologies</h5>
<div class="algorithmic-subtopics">
<hr>
<ul>
<li> NLP </li>
<li> Relaxation Model Fitting </li>
<li> Segmentation </li>
<li> Registration </li>
<li> Image Reconstruction </li>
<li> Visualization </li>
<li> Super Resolution </li>
</ul>
</div>
<div class="d-grid">
<a href="#" class="btn btn-primary text-uppercase">Button</a>
</div>
</div>
</div>
</div>
</div>
</section>
</div>
<hr class="divider" />
<!-- funding -->
<div class="text-center mt-5">
<div id="funding">
<h2 id="funding-header">Our research has been funded by:</h2>
</div>
</div>