-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvoronoi.py
469 lines (377 loc) · 14.3 KB
/
voronoi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# -*- coding: utf-8 -*-
#
# Compute the Voronoï diagram of a set of points
#
from math import sqrt
#
# Data types used in input/output
#
class Point(object):
"""A point in the plane
Attributes:
x: float, the x coordinate
y: float, the y coordinate
Properties:
square: float, the square of the norm of the vector (x, y)
norm: float, the norm of the vector (x, y)
"""
def __init__(self, x, y):
self.x = x
self.y = y
def __repr__(self):
return "%s(%r, %r)" % (self.__class__.__name__, self.x, self.y)
def __add__(self, other):
return self.__class__(self.x + other.x, self.y + other.y)
def __neg__(self):
return self.__class__(-self.x, -self.y)
def __sub__(self, other):
return self + (-other)
def __div__(self, other):
return self.__class__(self.x / other, self.y / other)
def __cmp__(self, other):
cmp_x = cmp(self.x, other.x)
if cmp_x != 0:
return cmp_x
return cmp(self.y, other.y)
def __abs__(self):
return self.norm
@property
def square(self):
return self.x**2 + self.y**2
@property
def norm(self):
return sqrt(self.square)
class VoronoiEdge(object):
"""An half-edge of the resulting graph.
The attributes of a VoronoiEdge are used internally to define the corresponding half-edge.
Properties:
line: (Point, Point), a point and a vector defining the line on which the edge lies
left_site: Point, the site on the left of the edge
right_site: Point, the site on the right of the edge
vertex_from: Point, the start point of the edge, or None if the edge is not bounded
vertex_to: Point, the end point of the edge, or None if the edge is not bounded
"""
def __init__(self, origin, twin, site, next_edge): #pylint: disable=W0231
self._origin = origin
self._twin = twin
self._site = site
self._next_edge = next_edge
self._cut_origin = None
def __repr__(self):
return "%s(left_site=%r, right_site=%r, vertex_from=%r, vertex_to=%r)" % (
self.__class__.__name__, self.left_site, self.right_site, self.vertex_from, self.vertex_to)
def _iter_neighbours(self):
he = self
while he is not None:
yield he
he = he._next_edge
@property
def line(self):
"""Returns p, v such that p is the point of the line lying in the middle of the two sites
and v is a vector directing the line in the direction that keeps the left site on the left"""
diff = self.right_site - self.left_site
return (self.left_site + self.right_site) / 2.0, Point(-diff.y, diff.x)
@property
def left_site(self):
return self._site
@property
def right_site(self):
return self._twin._site
@property
def vertex_from(self):
if self._origin is not None:
return self._origin
return self._cut_origin
@property
def vertex_to(self):
return self._twin.vertex_from
def trim(self, x_min, x_max, y_min, y_max):
"""Trim an infinite edge to make it fit in a bounding box"""
x0, y0 = self.line[0].x, self.line[0].y
for a, b, obj in (
(-self.line[1].x, -self.line[1].y, self),
(self.line[1].x, self.line[1].y, self._twin),):
if getattr(obj, '_origin') is None:
x_limit = x_max if a > 0 else x_min
y_limit = y_max if b > 0 else y_min
if a != 0:
t = (x_limit - x0) / a
_y = y0 + b * t
if y_min <= _y <= y_max:
setattr(obj, '_cut_origin', Point(x_limit, _y))
continue
assert b != 0
t = (y_limit - y0) / b
_x = x0 + a * t
assert x_min <= _x <= x_max
setattr(obj, '_cut_origin', Point(_x, y_limit))
#
# Generic helpers and data types
#
def determinant(v1, v2):
"""Determinant of two vectors, represented by Point instances"""
return v1.x * v2.y - v1.y * v2.x
def circumcircle(p1, p2, p3):
"""The circumcircle of three points"""
d = 2 * (p1.x * (p2.y - p3.y) + p2.x * (p3.y - p1.y) + p3.x * (p1.y - p2.y))
x = (p1.square * (p2.y - p3.y) + p2.square * (p3.y - p1.y) + p3.square * (p1.y - p2.y)) / d #pylint: disable=C0301
y = (p1.square * (p3.x - p2.x) + p2.square * (p1.x - p3.x) + p3.square * (p2.x - p1.x)) / d #pylint: disable=C0301
p = Point(x, y)
r = (p1 - p).norm
return (p, r)
class Heap(object):
"""A basic implementation of a heap"""
def __init__(self, items=None):
if items is None:
self._items = []
else:
self._items = list(items)
N = len(self._items) // 2
for i in range(0, N):
self._heapify(N - i)
def __repr__(self):
return "%s(%r)" % (self.__class__.__name__, self._items)
def __nonzero__(self):
return bool(self._items)
def _heapify(self, i):
size = len(self._items)
left = 2 * i
right = left + 1
m = i
if left <= size and self._items[left - 1] > self._items[m - 1]:
m = left
if right <= size and self._items[right - 1] > self._items[m - 1]:
m = right
if m != i:
_temp = self._items[i - 1]
self._items[i - 1] = self._items[m - 1]
self._items[m - 1] = _temp
self._heapify(m)
def insert(self, item):
self._items.append(item)
self._sift_up()
def _sift_up(self):
k = len(self._items)
v = self._items[k - 1]
while k > 1 and v > self._items[k // 2 - 1]:
self._items[k - 1] = self._items[k // 2 - 1]
k = k // 2
self._items[k - 1] = v
def pop_max(self):
if len(self._items) == 1:
return self._items.pop()
v = self._items[0]
self._items[0] = self._items.pop()
self._sift_down()
return v
def _sift_down(self):
k = 1
l = len(self._items)
v = self._items[0]
while k <= l // 2:
j = 2 * k
if j < l and self._items[j - 1] <= self._items[j]:
j += 1
if v >= self._items[j - 1]:
break
self._items[k - 1] = self._items[j - 1]
k = j
self._items[k - 1] = v
class Queue(Heap):
"""A queue based on a heap"""
def __iter__(self):
while self:
yield self.pop_max()
#
# Main class used for Voronoï diagram computation
#
class Voronoi(object):
"""A Voronoï diagram, computed using Fortune's algorithm
Args:
sites: list of Point, the sites we want to compute the diagram of
bounding_box: tuple of 4 float, (x_min, x_max, y_min, y_max) used to trim the edges, optional
Attributes:
vertices: list of Point, the vertices of the resulting Voronoï diagram
edges: list of VoronoiEdge, the edges of the resulting Voronoï diagram
"""
def __init__(self, sites, bounding_box=None):
self._queue = Queue([SiteEvent(s) for s in sites])
self._beach_line = None
self._faces = {}
self.vertices = []
self.edges = []
self._compute()
if bounding_box is not None:
for e in self.edges:
e.trim(*bounding_box)
def _compute(self):
for event in self._queue:
if isinstance(event, SiteEvent):
self._handle_site_event(event)
elif event.is_valid:
self._handle_circle_event(event)
def _create_twins(self, site1, site2):
half_edge = VoronoiEdge(None, None, site1, self._faces.get(site1, None))
half_edge._twin = VoronoiEdge(None, half_edge, site2, self._faces.get(site2, None))
self.edges.append(half_edge)
self._faces[site1] = half_edge
self._faces[site2] = half_edge._twin
return half_edge
def _handle_site_event(self, event):
# Insert new arc
inserted = self._insert_beach_line(event.site)
if inserted.left is None:
return
# If inserted on another, remove its bound events
if inserted.left is not None and inserted.left.circle_event is not None:
inserted.left.circle_event = None
# DLL things
self._create_twins(inserted.site, inserted.left.site)
# Check on left and right for circle events (converging)
for e in _build_circle_events(inserted=inserted):
self._queue.insert(e)
def _handle_circle_event(self, event):
# Delete the disappearing arc from beach_line
removed_on = self._remove_from_beach_line(event.arc)
# Remove all circles events involving it
if event.arc.left is not None and event.arc.left.circle_event is not None:
event.arc.left.circle_event = None
if event.arc.right is not None and event.arc.right.circle_event is not None:
event.arc.right.circle_event = None
# Add vertex
self.vertices.append(event.circle[0])
# HE things
new_half_edge = self._create_twins(removed_on.right.site, removed_on.site)
new_half_edge._origin = event.circle[0]
for left, right in (
(event.arc.left.site, event.arc.site),
(event.arc.site, event.arc.right.site)):
half_edge = None
for he in self._faces[left]._iter_neighbours():
if he._twin._site == right:
half_edge = he
break
half_edge._origin = event.circle[0]
# Check two new triples for circle events
for e in _build_circle_events(removed_on=removed_on):
self._queue.insert(e)
def _find_arc_above(self, site):
if self._beach_line is None:
return
for arc in self._beach_line:
low, high = arc.get_interval(site.y)
if high is None or high >= site.x:
assert low is None or site.x >= low
return arc
def _insert_beach_line(self, site):
arc = self._find_arc_above(site)
if arc is None:
self._beach_line = Arc(site)
return self._beach_line
_temp = arc.right
arc.right = Arc(site, left=arc)
arc.right.right = Arc(arc.site, left=arc.right, right=_temp)
if _temp is not None:
_temp.left = arc.right.right
return arc.right
def _remove_from_beach_line(self, arc):
if arc == self._beach_line:
self._beach_line = arc.right
if arc.left is not None:
arc.left.right = arc.right
if arc.right is not None:
arc.right.left = arc.left
return arc.left
def get_parabolas_intersections(point1, point2, sweep_line_y): #pylint: disable=R0914
"""Compute the intersections of two parabolas
This method will compute the intersections of the two parabolas defined by
point1, point2 and the horizontal line with ordinate sweep_line_y lying below those points.
The first intersection returned corresponds to the transition from point1 to point2 occuring when
moving along the beach line from left to right.
Args:
point1: tuple (x, y) of float numbers with y >= sweep_line_y
point2: tuple (x, y) of float numbers with y >= sweep_line_y
sweep_line_y: float
"""
(a, b) = point1.x, point1.y
(c, d) = point2.x, point2.y
b -= sweep_line_y
d -= sweep_line_y
# The equation will be A.x^2 + B.x + C = 0
A = (1 / b - 1 / d) / 2
B = c / d - a / b
C = (b - d + a**2 / b - c**2 / d) / 2
delta = B**2 - 4 * A * C
assert delta > 0
x1 = (- B - sqrt(delta)) / (2 * A)
x2 = (- B + sqrt(delta)) / (2 * A)
y1 = (x1 - a)**2 / (2 * b) + b / 2
y2 = (x2 - a)**2 / (2 * b) + b / 2
result = (Point(x1, y1 + sweep_line_y), Point(x2, y2 + sweep_line_y))
result = result if A >= 0 else (result[1], result[0])
if b > d:
return result[0], result[1]
else:
return result[1], result[0]
class Arc(object):
"""An arc of the beach line"""
def __init__(self, site, left=None, right=None, circle_event=None):
self.site = site
self.left = left
self.right = right
self.circle_event = circle_event
def __iter__(self):
item = self
while item is not None:
yield item
item = item.right
def get_interval(self, sweep_line_y):
low = None
high = None
if self.left is not None:
low = get_parabolas_intersections(self.left.site, self.site, sweep_line_y)[0].x
if self.right is not None:
high = get_parabolas_intersections(self.site, self.right.site, sweep_line_y)[0].x
return low, high
class FortuneEvent(object):
def __cmp__(self, other):
return cmp(self.y, other.y)
@property
def y(self):
raise NotImplementedError()
class SiteEvent(FortuneEvent):
def __init__(self, site):
self.site = site
def __repr__(self):
return u"SiteEvent at y=%s" % self.y
@property
def y(self):
return self.site.y
class CircleEvent(FortuneEvent):
def __init__(self, arc):
self.arc = arc
self.circle = circumcircle(arc.left.site, arc.site, arc.right.site)
arc.circle_event = self
@property
def y(self):
(center, radius) = self.circle
return center.y - radius
@property
def is_valid(self):
return self.arc.circle_event == self
def _build_circle_events(inserted=None, removed_on=None):
to_check = []
if inserted is not None:
if inserted.left is not None and inserted.left.left is not None:
to_check.append(inserted.left)
if inserted.right is not None and inserted.right.right is not None:
to_check.append(inserted.right)
if removed_on is not None:
if removed_on.left is not None and removed_on.right is not None:
to_check.append(removed_on)
if removed_on.right is not None and removed_on.right.right is not None:
to_check.append(removed_on.right)
for arc in to_check:
a, b, c = arc.left.site, arc.site, arc.right.site
if determinant(b - a, c - b) <= 0:
yield CircleEvent(arc)