forked from tloredo/Lab14-WackyCoins
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWackyCoinFlips.py
172 lines (142 loc) · 4.46 KB
/
WackyCoinFlips.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""
Beta-binomial MLM for fitting results from flipping wacky coins in BDA Lab 14.
Created May 1, 2015 by Tom Loredo
"""
import glob
import numpy as np
import scipy
import matplotlib as mpl
from matplotlib.pyplot import *
from scipy import *
from scipy import stats
from stanfitter import StanFitter
# try:
# import myplot
# from myplot import close_all, csavefig
# #myplot.tex_on()
# csavefig.save = False
# except ImportError:
# pass
ion()
class CoinCase:
def __init__(self, ctype, flips):
"""
Initialize a coin case from the coin type, `ctype` (an int), and
a string of binary flip results, `flips`.
"""
self.ctype = ctype
self.flips = flips
self.n_flips = len(flips)
self.n_heads = flips.count('1')
# Create simulated data, for testing data file reading.
if False:
ctypes = [0,0,0, 1,1,1, 2,2,2,2, 3,3,3,3]
alphas_sim = [.3,.4,.35, .5,.6,.5, .7,.8,.75,.77, .6,.62,.61,.59]
flips_sim = [50,30,40, 50,20,40, 50,30,40,50, 50,100,40,20]
n_coins = len(alphas_sim)
for i in range(n_coins):
ctype = ctypes[i]
alpha = alphas_sim[i]
# Collect 0/1 flip results in a string.
s = ''
for nf in range(flips_sim[i]):
if np.random.rand() < alpha:
s += '1'
else:
s += '0'
# Write to a separate file for each coin.
with open('tjl-{}-sim.txt'.format(i), 'w') as ofile:
ofile.write('{}\n'.format(ctype))
if len(s) <= 30: # to test multi-line input
ofile.write(s + '\n')
else:
ofile.write(s[:30] + '\n')
ofile.write(s[30:] + '\n')
# Read in data.
files = glob.glob('*-sim.txt')
cases = []
for name in files:
with open(name) as dfile:
ctype = int(dfile.readline())
s = ''
lines = dfile.readlines()
for line in lines:
s += line.strip()
cases.append(CoinCase(ctype, s))
# Cluster data by coin type.
clusters = {} # lists of results, keyed by coin type
for case in cases:
if not clusters.has_key(case.ctype):
clusters[case.ctype] = []
clusters[case.ctype].append( (case.n_flips, case.n_heads) )
# Convert to arrays:
for ctype in clusters:
clusters[ctype] = array(clusters[ctype])
# Stan model beta-binomial (for a single cluster):
bb_code = """
data {
int<lower=0> n_coins;
int<lower=0> n_flips[n_coins];
int<lower=0> n_heads[n_coins];
}
parameters {
real<lower=0., upper=1.> alpha[n_coins]; // probabilities for heads
real<lower=0.> mu_a; // pop'n mean alpha
real<lower=0.> sigma_a; // pop'n std dev'n
}
transformed parameters {
real<lower=0.> a; // gamma dist'n shape param
real<lower=0.> b; // gamma dist'n inv. scale
a <- mu_a*mu_a / (sigma_a*sigma_a);
b <- mu_a / (sigma_a*sigma_a);
}
model {
mu_a ~ uniform(0., 1.);
sigma_a ~ gamma(1., 2.); // mean .5, std dev .5
for (i in 1:n_coins) {
alpha[i] ~ gamma(a, b);
n_heads[i] ~ binomial(n_flips[i], alpha[i]);
}
}
"""
fitter = StanFitter(bb_code)
def fit_cluster(alpha_ax, hyper_ax, cluster):
"""
Peform a fit to the cluster data in array `cluster` and plot alpha
marginals on `alpha_ax` and pop'n params on `hyper_ax`.
"""
n_flips = cluster[:,0]
n_heads = cluster[:,1]
data = dict(n_coins=cluster.shape[0], n_flips=cluster[:,0],
n_heads=cluster[:,1])
fit = fitter.sample(data=data, n_iter=1000, n_chains=4)
for i, alpha in enumerate(fit.alpha):
lbl = '%d' % i
alpha_ax.hist(alpha.thinned, bins=20, label=lbl, alpha=.3)
alpha_ax.legend(markerscale=.5, fontsize='small', framealpha=.5)
hyper_ax.scatter(fit.mu_a.thinned, fit.sigma_a.thinned,
linewidths=0, alpha=.2)
xlim(0., 1.)
ylim(0., 1.)
return fit
fig = figure(figsize=(15,6))
rc('xtick.major', pad=6)
rc('xtick', labelsize=12)
rc('ytick.major', pad=6)
rc('ytick', labelsize=12)
subplots_adjust(left=.07, top=.95, right=.97, hspace=.2)
n_col = 4
for i, ctype in enumerate(clusters):
col = i+1
top = subplot(2, n_col, col)
bot = subplot(2, n_col, n_col+col)
fit = fit_cluster(top, bot, clusters[ctype])
top.set_title('{}'.format(ctype))
if col == 1:
top.set_xlabel(r'$\alpha_i$')
top.set_ylabel('Counts')
bot.set_xlabel(r'$\mu_f$')
bot.set_ylabel(r'$\sigma_f$')
else:
top.set_xlabel(r'$\alpha_i$')
bot.set_xlabel(r'$\mu_f$')