-
Notifications
You must be signed in to change notification settings - Fork 1
/
config.ini.template
73 lines (58 loc) · 1.34 KB
/
config.ini.template
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
[DEFAULT]
loglevel = DEBUG
logdir = log
experiments_dir = experiments
[nsrdb]
; use this path if you use hea
dataset_path = /training/hea/nsrdb
; use this path if you use numpy serialized format
dataset_npy_path = /training/npy/nsrdb
[mitdb]
; use this path if you use hea
dataset_path = /training/npy/mitdb
; use this path if you use numpy serialized format
dataset_npy_path = /training/npy/mitdb
excel_label = mitdb_labeled.xlsx
[preprocessing]
use_hea = False
NSR_DB_TAG = 0
MIT_DB_TAG = 1
; Take 2 records from MIT_DB/NSR_DB to build dev set
dev_record_each = 2
; Take 5 records from MIT_DB/NSR_DB to build test set
test_record_each = 5
batch_size = 256
sequence_length = 3600
overlap_percent = 5
random_time_scale_percent = 20
dilation_factor = 1
enable_awgn = True
rms_noise_power_percent = 3
enable_rndinvert = True
rndinvert_prob = 0.5
enable_rndscale = False
scale = 1.2
scale_prob = 0.5
enable_rnddc = False
dc = .2
dc_prob = 0.5
[RNN-train]
use_tpu=True
plot_datasets = False
train_steps = 0
auc_roc_cb = False
rnn_output_features = 32
l2_regularization = 0
dropout = 0.2
initial_lr = 0.001
initial_weights = None
model_output = trained_model/model.h5
tensorboard_dir = tensorboard
epochs = 50
patientce_reduce_lr = 2
early_stop = True
verbosity = 1
[RNN-test]
plot_datasets = False
experiment_env_tag = 75c49d64d0_0227_121924
batch_size = 32