From 3529896894fa39f943c0147325daeded00e62620 Mon Sep 17 00:00:00 2001 From: tamirogers Date: Tue, 18 Jun 2024 13:38:41 -0600 Subject: [PATCH] added equations for W,Z,P, A and C along with nonlinear terms --- .../User_Guide/physics_math_overview.rst | 92 +++++++++++++++++-- 1 file changed, 86 insertions(+), 6 deletions(-) diff --git a/doc/source/User_Guide/physics_math_overview.rst b/doc/source/User_Guide/physics_math_overview.rst index f3952bf3..95379fce 100644 --- a/doc/source/User_Guide/physics_math_overview.rst +++ b/doc/source/User_Guide/physics_math_overview.rst @@ -510,10 +510,10 @@ The equations that are solved are then equations for the radial component of the .. math:: :label: Radial Component of the Momentum Equation - \begin{aligned} + \tiny\begin{aligned} \frac{\partial}{\partial t}\left(\overline{\rho}v_{r}\right)_{l}^{m}=\frac{\ell\left(\ell+1\right)}{r^2}\frac{\partial W_{l}^{m}}{\partial t}=-\rho\frac{\partial{P_{l}^{m}}}{\partial r}-\overline{g}\left(\frac{\partial\overline{\rho}}{\partial \Theta}\right)_{p,\xi} \\ - +\frac{2\Omega}{r}\left[im\frac{\partial W_{l}^{m}}{\partial r}+\left(\ell+2\right)C_{l}^{m}Z_{l+1}^{m}-\left(\ell-1\right)C_{l}^{m}Z_{\ell-1}^{m}\right] + +\frac{2\Omega}{r}\left[im\frac{\partial W_{l}^{m}}{\partial r}+\left(\ell+2\right)d_{l}^{m}Z_{l+1}^{m}-\left(\ell-1\right)d_{l}^{m}Z_{\ell-1}^{m}\right] \\ +\frac{\overline{\nu}\ell\left(\ell+ 1\right)}{r^2}\left[\frac{{\partial^2 W_{l}^{m}}}{{\partial r^2}}+\left(2 h_{\nu}-\frac{h_{\rho}}{3}\right) \frac{{\partial W_{l}^{m}}}{{\partial r}}\right. @@ -523,22 +523,46 @@ The equations that are solved are then equations for the radial component of the +\frac{FLMW1_l^m}{r^2} \end{aligned} + + + the radial component of the curl of the momentum equation (22) .. math:: :label: Radial Component of the Curl of the Momentum Equation - \begin{aligned} - \frac{\partial \left(\nabla\times \overline{\rho}\bf{v}\right)_{r,l}^{m}}{\partial t}=\frac{\ell\left(\ell+1\right)}{r^2}\frac{\partial Z_{l}^{m}}{\partial t}=\frac{2\Omega}{r^2}\left[im Z_{l}^{m} + \ell\left(\ell+1\right)C_{l+1}^{m}\left(\frac{\partial W_{l+1}^{m}}{\partial r}+\right .\right . + \tiny\begin{aligned} + \frac{\partial \left(\nabla\times \overline{\rho}\bf{v}\right)_{r,l}^{m}}{\partial t}=\frac{\ell\left(\ell+1\right)}{r^2}\frac{\partial Z_{l}^{m}}{\partial t}=\frac{2\Omega}{r^2}\left[im Z_{l}^{m} + \right . \\ - \left .\left . \frac{\left(l+1\right)}{r^2}W_{l+1}^{m}\right)+\left(\ell+1\right)\left(\ell-1\right)C_{l}^m \left(\frac{\partial W_{l-1}^m}{\partial r}-\frac{\ell}{r}W_{l-1}^m\right)\right]+\frac{\nu\ell\left(\ell+1\right)}{r^2}\left[\frac{\partial^2 Z_{l}^m}{\partial r^2}+\left(h_{\nu}-h_{\rho}\right)\frac{\partial Z_{l}^m}{\partial r}\right . + \left . \ell\left(\ell+1\right)d_{l+1}^{m}\left(\frac{\partial W_{l+1}^{m}}{\partial r}+ + \frac{\left(l+1\right)}{r^2}W_{l+1}^{m}\right)+\left(\ell+1\right)\left(\ell-1\right)d_{l}^m \left(\frac{\partial W_{l-1}^m}{\partial r}-\frac{\ell}{r}W_{l-1}^m\right)\right] \\ - \left . + +\frac{\nu\ell\left(\ell+1\right)}{r^2}\left[\frac{\partial^2 Z_{l}^m}{\partial r^2}+\left(h_{\nu}-h_{\rho}\right)\frac{\partial Z_{l}^m}{\partial r} -\left(\frac{2h_{\rho}}{r}+\frac{dh_{\rho}}{dr}+h_{\nu}\left(\frac{2}{r}+h_{\rho}\right)+\frac{\ell\left(\ell+1\right)}{r^2}\right)Z_{l}^m\right] \\ \left(\ell+1\right)C_{l}^m FLMW3_{l-1}^m-\ell C_{l+1}^m FLMW3_{l+1}^m-im FLMW2_{l}^m \end{aligned} +and the Horizontal Divergence of the Momentum Equation (23) + +.. math:: + :label: Horizontal Divergence of the Momentum Equation + + \tiny\begin{aligned} + \frac{\partial \left(\nabla\cdot\overline{\rho} \bf{v}\right)_{l}^m}{\partial t}=-\frac{\ell\left(\ell+1\right)}{r^2}\frac{\partial}{\partial t}\left(\frac{\partial W_l^m}{\partial r}\right)=\frac{\ell\left(\ell+1\right)}{r^2}\overline{\rho}P_l^m+ + \\ + \frac{2\Omega}{r^2}\left[\ell\left(\ell+2\right)d_{l+1}^mZ_{l+1}^m +\left(\ell+1\right)\left(\ell-1\right)d_l^m Z_{l-1}^m-im\left(\frac{\partial W_l^m}{\partial r}+\frac{\ell\left(\ell+1\right)}{r}W_l^m\right)\right] + \\ + +\frac{\nu\ell\left(\ell+1\right)}{r^2}\left[-\frac{\partial^3{W_l^m}}{\partial r^3} -\left(h_{\nu}-h_{\rho}\right)\frac{\partial^2 W_l^m}{r^2}\right. + \\ + \left. +\left(\frac{2h_\rho}{r}+\frac{\partial h_{\rho}}{\partial r}+h_{\nu}\left(\frac{2}{r}+h_{\rho}\right)+\frac{\ell\left(\ell+1\right)}{r^2}\right)\frac{\partial W_l^m}{\partial r}\right . + \\ + \left . -\frac{\ell\left(\ell+1\right)}{r^2}\left(h_{\nu}+\frac{2}{3}h_{\rho}+\frac{2}{r}\right)W_l^m\right] + \\ + +\left[\left(\ell+1\right)C_l^mFLMW2_{l-1}^m-\ell C_{l+1}^m FLMW2_{l+1}^m+im FLMW3_l^m\right] + \end{aligned} + + A similar decomposition is performed on the magnetic field to ensure it remains divergence free. In that case, the magnetic field is projected onto flux functions such that .. math:: @@ -578,6 +602,62 @@ and .. _pseudospectral: +The equations for C and A, which are solved by Rayleigh are then the Radial Component of the Magnetic Induction Equation (30): + +.. math:: + :label: Radial Component of the Magnetic Induction Equation + + \tiny\begin{aligned} + \frac{\partial B_{r,l}^m}{\partial t}=\frac{\ell\left(\ell+1\right)}{r^2}\frac{\partial C_l^m}{\partial t} =\overline{\eta}\frac{\ell\left(\ell+1\right)}{r^2}\left(\frac{\partial^2 C_l^m}{\partial r^2}-\frac{\ell\left(\ell+1\right)}{r^2}C_l^m\right) + \\ + +\left[\left(\ell+1\right)d_{l}^mFLMB3_{l-1}^m-\ell d_{l+1}^mFLMB3_{l+1}^m-imFLMB2_l^m\right] + \end{aligned} + +and the radial component of the curl of the magnetic induction equation (): + +.. math:: + :label: Radial Component of the Curl of the Magnetic Induction Equation + + \tiny\begin{aligned} + \frac{\partial\left(\nabla\times B\right)_{r,l}^m}{\partial t}=\frac{\ell\left(\ell+1\right)}{r^2}\frac{\partial A_l^m}{\partial t}=\overline{\eta}\frac{\ell\left(\ell+1\right)}{r^2}\left(\frac{\partial^2 A_l^m}{\partial r^2}+h_{\eta}\frac{\partial A_l^m}{\partial r}-\frac{\ell\left(\ell+1\right)}{r^2} A_l^m \right)+ + \\ + \frac{1}{r^2}\left[\frac{\ell\left(\ell+1\right)}{r^2}FLMB1_l^m+\frac{\partial}{\partial r}\left(r^2\left(\left(\ell+1\right)d_l^mFLMB2_{l-1}^m-\ell d_{l+1}^mFLMB2_{l+1}^m+imFLMB3_l^m\right)\right)\right] + \end{aligned} + + +Where the "FLM*" terms refer to nonlinear terms, defined as: + +.. math:: + :label: FLMW1 + + \scriptsize FLMW1=r^2\left[-\left(\nabla\cdot\overline{\rho}\bf{v}\bf{v}\right)_r+\frac{1}{\mu}\left(\left(\nabla\times\bf{B}\right)\times\bf{B}\right)_r +\Omega^2\rho r\sin^2\theta\right]_l^m + +.. math:: + :label: FLMW2 + + \scriptsize FLMW2=\left[\frac{-\nabla\cdot\left(\overline{\rho}\bf{v}\bf{v}\right)_{\phi}}{r\sin\theta}+\frac{1}{\mu}\frac{\left(\left(\nabla\times\bf{B}\right)\times\bf{B}\right)_{\theta}}{r\sin\theta}+\Omega^2\rho\cos\theta\right]_l^m + +.. math:: + :label: FLMW3 + + \scriptsize FLMW3=\left[\frac{-\left(\nabla\cdot\overline{\rho}\bf{v}\bf{v}\right)_{\phi}}{r\sin\theta}+\frac{1}{\mu}\frac{\left(\left(\nabla\times\bf{B}\right)\times\bf{B}\right)_{\phi}}{r\sin\theta}\right]_l^m + +.. math:: + :label: FLMB1 + + \scriptsize FLMB1=\left[r^2\left(\bf{v}\times\bf{B}\right)_r\right]_l^m + +.. math:: + :label: FLMB2 + + \scriptsize FLMB2=\left[\frac{\left(\bf{v}\times\bf{B}\right)_{\theta}}{r\sin\theta}\right]_l^m + +.. math:: + :label: FLMB3 + + \scriptsize FLMB3=\left[\frac{\left(\bf{v}\times\bf{B}\right)_{\phi}}{r\sin\theta}\right]_l^m + + The Pseudospectral Approach ---------------------------