-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtraining.py
121 lines (88 loc) · 5.8 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import torch
from tqdm import tqdm
from utils import updata_lr, Meter, cal_score
def train(params, model, optimizer, epoch, train_loader, writer=None):
model.train()
device = params['device']
loss_meter = Meter()
word_right, struct_right, exp_right, length, cal_num = 0, 0, 0, 0, 0
with tqdm(train_loader, total=len(train_loader)) as pbar:
for batch_idx, (images, image_masks, labels, label_masks) in enumerate(pbar):
images, image_masks, labels, label_masks = images.to(device), image_masks.to(device), labels.to(
device), label_masks.to(device)
batch, time = labels.shape[:2]
if not 'lr_decay' in params or params['lr_decay'] == 'cosine':
updata_lr(optimizer, epoch, batch_idx, len(train_loader), params['epoches'], params['lr'])
optimizer.zero_grad()
probs, loss = model(images, image_masks, labels, label_masks)
word_loss, struct_loss, parent_loss, kl_loss = loss
loss = (word_loss + struct_loss + parent_loss + kl_loss)
loss.backward()
if params['gradient_clip']:
torch.nn.utils.clip_grad_norm_(model.parameters(), params['gradient'])
optimizer.step()
loss_meter.add(loss.item())
wordRate, structRate, ExpRate = cal_score(probs, labels, label_masks)
word_right = word_right + wordRate * time
struct_right = struct_right + structRate * time
exp_right = exp_right + ExpRate * batch
length = length + time
cal_num = cal_num + batch
if writer:
current_step = epoch * len(train_loader) + batch_idx + 1
writer.add_scalar('train/loss', loss.item(), current_step)
writer.add_scalar('train/word_loss', word_loss.item(), current_step)
writer.add_scalar('train/struct_loss', struct_loss.item(), current_step)
writer.add_scalar('train/WordRate', wordRate, current_step)
writer.add_scalar('train/parent_loss', parent_loss.item(), current_step)
writer.add_scalar('train/kl_loss', kl_loss.item(), current_step)
writer.add_scalar('train/structRate', structRate, current_step)
writer.add_scalar('train/ExpRate', ExpRate, current_step)
writer.add_scalar('train/lr', optimizer.param_groups[0]['lr'], current_step)
pbar.set_description(f'Epoch: {epoch+1} train loss: {loss.item():.4f} word loss: {word_loss:.4f} '
f'struct loss: {struct_loss:.4f} parent loss: {parent_loss:.4f} '
f'kl loss: {kl_loss:.4f} WordRate: {word_right / length:.4f} '
f'structRate: {struct_right / length:.4f} ExpRate: {exp_right / cal_num:.4f}')
if writer:
writer.add_scalar('epoch/train_loss', loss_meter.mean, epoch+1)
writer.add_scalar('epoch/train_WordRate', word_right / length, epoch+1)
writer.add_scalar('epoch/train_structRate', struct_right / length, epoch + 1)
writer.add_scalar('epoch/train_ExpRate', exp_right / cal_num, epoch + 1)
return loss_meter.mean, word_right / length, struct_right / length, exp_right / cal_num
def eval(params, model, epoch, eval_loader, writer=None):
model.eval()
device = params['device']
loss_meter = Meter()
word_right, struct_right, exp_right, length, cal_num = 0, 0, 0, 0, 0
with tqdm(eval_loader, total=len(eval_loader)) as pbar, torch.no_grad():
for batch_idx, (images, image_masks, labels, label_masks) in enumerate(eval_loader):
images, image_masks, labels, label_masks = images.to(device), image_masks.to(device), labels.to(
device), label_masks.to(device)
batch, time = labels.shape[:2]
probs, loss = model(images, image_masks, labels, label_masks, is_train=False)
word_loss, struct_loss = loss
loss = word_loss + struct_loss
loss_meter.add(loss.item())
wordRate, structRate, ExpRate = cal_score(probs, labels, label_masks)
word_right = word_right + wordRate * time
struct_right = struct_right + structRate * time
exp_right = exp_right + ExpRate
length = length + time
cal_num = cal_num + batch
if writer:
current_step = epoch * len(eval_loader) + batch_idx + 1
writer.add_scalar('eval/loss', loss.item(), current_step)
writer.add_scalar('eval/word_loss', word_loss.item(), current_step)
writer.add_scalar('eval/struct_loss', struct_loss.item(), current_step)
writer.add_scalar('eval/WordRate', wordRate, current_step)
writer.add_scalar('eval/structRate', structRate, current_step)
writer.add_scalar('eval/ExpRate', ExpRate, current_step)
pbar.set_description(f'Epoch: {epoch + 1} eval loss: {loss.item():.4f} word loss: {word_loss:.4f} '
f'struct loss: {struct_loss:.4f} WordRate: {word_right / length:.4f} '
f'structRate: {struct_right / length:.4f} ExpRate: {exp_right / cal_num:.4f}')
if writer:
writer.add_scalar('epoch/eval_loss', loss_meter.mean, epoch + 1)
writer.add_scalar('epoch/eval_WordRate', word_right / length, epoch + 1)
writer.add_scalar('epoch/eval_structRate', struct_right / length, epoch + 1)
writer.add_scalar('epoch/eval_ExpRate', exp_right / len(eval_loader.dataset), epoch + 1)
return loss_meter.mean, word_right / length, struct_right / length, exp_right / cal_num