-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathishigami_sparse_cp.py
172 lines (139 loc) · 5.48 KB
/
ishigami_sparse_cp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
import numpy as np
import chaospy as cp
from sklearn import linear_model
print(np.__version__) # 1.21.0
print(cp.__version__) # 4.3.2
def ishigami(x, a=7., b=0.1):
"""Ishigami function."""
_f = np.sin(x[0, :]) + a * np.sin(x[1, :])**2 \
+ b * x[2, :]**4 * np.sin(x[0, :])
return _f
N_param = 3 # Number of uncertain parameters
# Joint distribution
dist = cp.Iid(cp.Uniform(-np.pi, np.pi), N_param)
poly_order = 12 # Maximum maybe 20
# Ordinary polynomials
phi, coeffs = cp.expansion.stieltjes(
poly_order, dist, normed=True, graded=True, reverse=True, retall=True,
cross_truncation=1.0)
# import ipdb; ipdb.set_trace()
# --------------------------------------------------------------------------- #
# Sparse PCE
# --------------------------------------------------------------------------- #
# Number of experimental design points
N_ED = 200 # Can be smaller that 2-3 * len(phi)
print(r"Number of ED points {}".format(N_ED))
# Experimental design points drawing from latin_hypercube, halton etc.
samples = dist.sample(N_ED, 'latin_hypercube')
evals = np.array(ishigami(samples))
# Ordinary information matrix
poly_evals = phi(*samples).T
# Using Lasso model fit with Least Angle Regression
reg = linear_model.LassoLars(alpha=0.01, fit_intercept=False, normalize=False)
reg.fit(poly_evals, evals)
phi_active = phi[reg.active_]
# Sparse information matrix
Pinfo_sparse = phi_active(*samples).T
fourier_coeffs_sparse = np.linalg.inv(Pinfo_sparse.T @ Pinfo_sparse) \
@ Pinfo_sparse.T @ evals
# Sparse PCE based surrogate model
M_sparse = cp.sum(phi_active * fourier_coeffs_sparse, -1)
# import ipdb; ipdb.set_trace()
# --------------------------------------------------------------------------- #
# Compute the leave-one-out error (errLOO)
# errLOO <= 10^{-2}
# --------------------------------------------------------------------------- #
h_diag_sparse = np.diagonal(
Pinfo_sparse @ np.linalg.inv(Pinfo_sparse.T @ Pinfo_sparse)
@ Pinfo_sparse.T)
# Compute the leave-one-out error
errLOO = 1 / N_ED * np.sum(
((evals - M_sparse(*samples)) / (1 - h_diag_sparse))**2)
print(r'errLOO error is {}'.format(errLOO))
# import ipdb; ipdb.set_trace()
# --------------------------------------------------------------------------- #
# Estimate the total and the first-order Sobol indices based on the fourier
# coefficients
# --------------------------------------------------------------------------- #
N_param = samples.shape[0] # Number of uncertain parameters
# Coefficients but filled with zero if it is sparse
fourier_coeffs_hat = np.zeros(len(phi))
fourier_coeffs_hat[reg.active_] = fourier_coeffs_sparse
# Total variance using the Fourier coefficients
D_hat = np.sum(fourier_coeffs_hat[1:]**2, axis=0)
# Get a multi-index
alpha = cp.glexindex(
start=0, stop=poly_order+1, dimensions=3, cross_truncation=1.0,
graded=True, reverse=True).T
# --------------------------------------------------------------------------- #
# Return Sobol' indices
length_ = 50
# --------------------------------------------------------------------------- #
# Total Sobol' indices based on sparse PCE
Sens_t_hat = np.empty(N_param)
for idx in range(N_param):
index = (alpha[idx, :] > 0)
Sens_t_hat[idx] = np.sum(fourier_coeffs_hat[index]**2, axis=0) / D_hat
print(r'-' * length_)
print(r'Total Sobol indices')
print(r'-' * length_)
print(Sens_t_hat)
# First-order Sobol' indices based on sparse PCE
Sens_m_hat = np.empty(N_param)
for idx in range(N_param):
index = (alpha[idx, :] > 0) & (alpha.sum(0) == alpha[idx, :])
Sens_m_hat[idx] = np.sum(fourier_coeffs_hat[index]**2, axis=0) / D_hat
print(r'-' * length_)
print(r'First-order Sobol indices')
print(r'-' * length_)
print(Sens_m_hat)
# Second-order Sobol' indices based on PCE
Sens_m2_hat = np.empty([N_param, N_param])
for idx in range(N_param):
for jdx in range(N_param):
index = (idx != jdx) & (alpha[idx, :] > 0) & (alpha[jdx, :] > 0) \
& (alpha.sum(0) == alpha[idx, :]+alpha[jdx, :])
Sens_m2_hat[idx, jdx] = np.sum(
fourier_coeffs_hat[index]**2, axis=0) / D_hat
print(r'-' * length_)
print(r'Second-order Sobol indices')
print(r'-' * length_)
print(Sens_m2_hat)
import ipdb; ipdb.set_trace()
# --------------------------------------------------------------------------- #
print(r'-' * length_)
print(r'Plot Univariate effects')
print(r'-' * length_)
# --------------------------------------------------------------------------- #
N_linspace = 250
M1_linspace = np.linspace(
[-np.pi, -np.pi, -np.pi], [np.pi, np.pi, np.pi], N_linspace)
M1 = np.empty([N_param, N_linspace])
for idx in range(N_param):
# If Sens_m_hat[idx]=0, univariate effects are zero
if Sens_m_hat[idx] != 0:
theta_idx = np.zeros_like(M1_linspace)
index = (alpha[idx, :] > 0) & (alpha.sum(0) == alpha[idx, :])
theta_idx[:, idx] = M1_linspace[:, idx]
evals = (fourier_coeffs_hat * phi)[index](
**{f"q{idx}": theta_idx[:, idx]})
else: # Univariate effects are zero
evals = np.zeros_like(M1_linspace)
M1[idx, :] = fourier_coeffs_hat[0] + np.sum(evals, axis=0)
# Plot with matplotlib
import matplotlib.pyplot as plt
idx = 0
plt.plot(M1_linspace[:, idx], M1[idx, :], label=r'$M^1_0$')
idx = 1
plt.plot(M1_linspace[:, idx], M1[idx, :], label=r'$M^1_1$')
idx = 2
plt.plot(M1_linspace[:, idx], M1[idx, :], label=r'$M^1_2$')
plt.xlim([-np.pi, np.pi])
plt.xlabel(r'$\theta_i$')
plt.ylabel(r'$M^1_i$')
plt.legend(loc='lower left')
plt.show()
plt.close()