forked from rodrigomas/DCTLs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLMT_Academy_Analytic_3a.dctl
358 lines (300 loc) · 8.33 KB
/
LMT_Academy_Analytic_3a.dctl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
// LMT_Academy_Analytic_3 by Scott Dyer (converted to DCTL from original CTL by Baldavenger)
//
// Input is linear ACES2065-1
// Output is linear ACES2065-1
__CONSTANT__ float PIE = 3.14159265358979323846264338327950288f;
__CONSTANT__ float X_BRK = 0.0078125f;
__CONSTANT__ float Y_BRK = 0.155251141552511f;
__CONSTANT__ float A = 10.5402377416545f;
__CONSTANT__ float B = 0.0729055341958355f;
__CONSTANT__ float3 RGB_2_YAB_MAT[3] = { {1.0f/3.0f, 1.0f/2.0f, 0.0f},
{1.0f/3.0f, -1.0f/4.0f, 0.433012701892219f},
{1.0f/3.0f, -1.0f/4.0f, -0.433012701892219f} };
__DEVICE__ float3* mult_f_f33(float f, float3 A[3])
{
for( int i = 0; i < 3; ++i )
{
A[i].x *= f;
A[i].y *= f;
A[i].z *= f;
}
return A;
}
__DEVICE__ float3 mult_f3_f33(float3 In, float3 A[3])
{
float3 out;
out.x = In.x * A[0].x + In.y * A[0].y + In.z * A[0].z;
out.y = In.x * A[1].x + In.y * A[1].y + In.z * A[1].z;
out.z = In.x * A[2].x + In.y * A[2].y + In.z * A[2].z;
return out;
}
__DEVICE__ float3* invert_f33(float3 A[3])
{
float3 result[3];
float det = A[0].x * A[1].y * A[2].z
+ A[0].y * A[1].z * A[2].x
+ A[0].z * A[1].x * A[2].y
- A[2].x * A[1].y * A[0].z
- A[2].y * A[1].z * A[0].x
- A[2].z * A[1].x * A[0].y;
if( det != 0.0f )
{
result[0].x = A[1].y * A[2].z - A[1].z * A[2].y;
result[0].y = A[2].y * A[0].z - A[2].z * A[0].y;
result[0].z = A[0].y * A[1].z - A[0].z * A[1].y;
result[1].x = A[2].x * A[1].z - A[1].x * A[2].z;
result[1].y = A[0].x * A[2].z - A[2].x * A[0].z;
result[1].z = A[1].x * A[0].z - A[0].x * A[1].z;
result[2].x = A[1].x * A[2].y - A[2].x * A[1].y;
result[2].y = A[2].x * A[0].y - A[0].x * A[2].y;
result[2].z = A[0].x * A[1].y - A[1].x * A[0].y;
A = mult_f_f33( 1.0f / det, result);
}
return A;
}
__DEVICE__ float3 rgb_2_yab(float3 rgb)
{
float3 yab;
yab = mult_f3_f33(rgb, RGB_2_YAB_MAT);
return yab;
}
__DEVICE__ float3 yab_2_ych(float3 yab)
{
float3 ych;
ych = yab;
float yo = yab.y * yab.y + yab.z * yab.z;
ych.y = _sqrtf(yo);
ych.z = _atan2f(yab.z, yab.y) * (180.0f / PIE);
if (ych.z < 0.0f)
{
ych.z += 360.0f;
}
return ych;
}
__DEVICE__ float3 ych_2_yab(float3 ych)
{
float3 yab;
yab.x = ych.x;
float h = ych.z * (PIE / 180.0f);
yab.y = ych.y * _cosf(h);
yab.z = ych.y * _sinf(h);
return yab;
}
__DEVICE__ float3 yab_2_rgb(float3 yab)
{
float3 rgb;
float3* abc;
abc = invert_f33(RGB_2_YAB_MAT);
rgb = mult_f3_f33(yab, abc);
return rgb;
}
__DEVICE__ float3 scale_C(float3 rgb, float percentC)
{
float3 ych, yab;
yab = rgb_2_yab(rgb);
ych = yab_2_ych(yab);
ych.y *= percentC;
yab = ych_2_yab(ych);
rgb = yab_2_rgb(yab);
return rgb;
}
__DEVICE__ float lin_to_ACEScct(float in)
{
float out;
if (in <= X_BRK){
out = A * in + B;
} else {
out = (_log2f(in) + 9.72f) / 17.52f;
}
return out;
}
__DEVICE__ float ACEScct_to_lin(float in)
{
float out;
if (in > Y_BRK){
out = _powf(2.0f, in * 17.52f - 9.72f);
} else {
out = (in - B) / A;
}
return out;
}
__DEVICE__ float3 ACES_to_ACEScct(float3 in)
{
float3 out;
//AP0 to AP1
out.x = 1.4514393161f * in.x + -0.2365107469f * in.y + -0.2149285693f * in.z;
out.y = -0.0765537734f * in.x + 1.1762296998f * in.y + -0.0996759264f * in.z;
out.z = 0.0083161484f * in.x + -0.0060324498f * in.y + 0.9977163014f * in.z;
// Linear to ACEScct
out.x = lin_to_ACEScct(out.x);
out.y = lin_to_ACEScct(out.y);
out.z = lin_to_ACEScct(out.z);
return out;
}
__DEVICE__ float3 ACEScct_to_ACES(float3 in)
{
float3 lin, out;
// ACEScct to linear
lin.x = ACEScct_to_lin(in.x);
lin.y = ACEScct_to_lin(in.y);
lin.z = ACEScct_to_lin(in.z);
// AP1 to AP0
out.x = 0.6954522414f * lin.x + 0.1406786965f * lin.y + 0.1638690622f * lin.z;
out.y = 0.0447945634f * lin.x + 0.8596711185f * lin.y + 0.0955343182f * lin.z;
out.z = -0.0055258826f * lin.x + 0.0040252103f * lin.y + 1.0015006723f * lin.z;
return out;
}
__DEVICE__ float3 ASCCDL_inACEScct
(
float3 acesIn,
float SLOPE[3],
float OFFSET[3],
float POWER[3],
float SAT
)
{
acesIn = ACES_to_ACEScct(acesIn);
acesIn.x = _powf(_clampf((acesIn.x * SLOPE[0]) + OFFSET[0], 0.0f, 1.0f), POWER[0]);
acesIn.y = _powf(_clampf((acesIn.y * SLOPE[1]) + OFFSET[1], 0.0f, 1.0f), POWER[1]);
acesIn.z = _powf(_clampf((acesIn.z * SLOPE[2]) + OFFSET[2], 0.0f, 1.0f), POWER[2]);
float luma = 0.2126f *acesIn.x + 0.7152f * acesIn.y + 0.0722f * acesIn.z;
float satClamp = _clampf(SAT, 0.0f, 10.0f);
acesIn.x = luma + satClamp * (acesIn.x - luma);
acesIn.y = luma + satClamp * (acesIn.y - luma);
acesIn.z = luma + satClamp * (acesIn.z - luma);
acesIn = ACEScct_to_ACES(acesIn);
return acesIn;
}
__DEVICE__ float3 gamma_adjust_linear(float3 rgbIn, float GAMMA, float PIVOT)
{
const float SCALAR = PIVOT / _powf(PIVOT, GAMMA);
if (rgbIn.x > 0.0f){ rgbIn.x = _powf(rgbIn.x, GAMMA) * SCALAR;}
if (rgbIn.y > 0.0f){ rgbIn.y = _powf(rgbIn.y, GAMMA) * SCALAR;}
if (rgbIn.z > 0.0f){ rgbIn.z = _powf(rgbIn.z, GAMMA) * SCALAR;}
return rgbIn;
}
__DEVICE__ float interpolate1D(float2 table[], float p, int t)
{
if( p <= table[0].x ) return table[0].y;
if( p >= table[t - 1].x ) return table[t - 1].y;
for( int i = 0; i < t - 1; ++i )
{
if( table[i].x <= p && p < table[i+1].x )
{
float s = (p - table[i].x) / (table[i+1].x - table[i].x);
return table[i].y * ( 1.0f - s ) + table[i+1].y * s;
}
}
return 0.0f;
}
__DEVICE__ float cubic_basis_shaper(float x, float w)
{
float4 M[4] = { { -1./6, 3./6, -3./6, 1./6 },
{ 3./6, -6./6, 3./6, 0./6 },
{ -3./6, 0./6, 3./6, 0./6 },
{ 1./6, 4./6, 1./6, 0./6 } };
float knots[5] = { -w/2.0f, -w/4.0f, 0.0f, w/4.0f, w/2.0f };
float y = 0.0f;
if ((x > knots[0]) && (x < knots[4])) {
float knot_coord = (x - knots[0]) * 4.0f/w;
int j = knot_coord;
float t = knot_coord - j;
float monomials[4] = { t*t*t, t*t, t, 1. };
if ( j == 3) {
y = monomials[0] * M[0].x + monomials[1] * M[1].x +
monomials[2] * M[2].x + monomials[3] * M[3].x;
} else if ( j == 2) {
y = monomials[0] * M[0].y + monomials[1] * M[1].y +
monomials[2] * M[2].y + monomials[3] * M[3].y;
} else if ( j == 1) {
y = monomials[0] * M[0].z + monomials[1] * M[1].z +
monomials[2] * M[2].z + monomials[3] * M[3].z;
} else if ( j == 0) {
y = monomials[0] * M[0].w + monomials[1] * M[1].w +
monomials[2] * M[2].w + monomials[3] * M[3].w;
} else {
y = 0.0f;
}
}
return y * 3/2.0f;
}
__DEVICE__ float center_hue( float hue, float centerH)
{
float hueCentered = hue - centerH;
if (hueCentered < -180.0f) hueCentered = hueCentered + 360.0f;
else if (hueCentered > 180.0f) hueCentered = hueCentered - 360.0f;
return hueCentered;
}
__DEVICE__ float uncenter_hue( float hueCentered, float centerH)
{
float hue = hueCentered + centerH;
if (hue < 0.0f) hue = hue + 360.0f;
else if (hue > 360.0f) hue = hue - 360.0f;
return hue;
}
__DEVICE__ float3 rotate_H_in_H(float3 rgb, float centerH, float widthH, float degreesShift)
{
float3 ych, yab;
yab = rgb_2_yab(rgb);
ych = yab_2_ych(yab);
float centeredHue = center_hue(ych.z, centerH);
float f_H = cubic_basis_shaper(centeredHue, widthH);
float old_hue = centeredHue;
float new_hue = centeredHue + degreesShift;
float2 table[2] = {{0.0f, old_hue}, {1.0f, new_hue}};
float blended_hue = interpolate1D(table, f_H, 2);
if (f_H > 0.0f)
{
ych.z = uncenter_hue(blended_hue, centerH);
}
yab = ych_2_yab(ych);
rgb = yab_2_rgb(yab);
return rgb;
}
__DEVICE__ float3 scale_C_at_H
(
float3 rgb,
float centerH,
float widthH,
float percentC
)
{
float3 ych, yab, new_rgb;
new_rgb = rgb;
yab = rgb_2_yab(rgb);
ych = yab_2_ych(yab);
if (ych.y > 0.0f) {
float centeredHue = center_hue(ych.z, centerH);
float f_H = cubic_basis_shaper(centeredHue, widthH);
if (f_H > 0.0) {
float3 new_ych = ych;
new_ych.y = ych.y * (f_H * (percentC - 1.0f) + 1.0f);
yab = ych_2_yab(new_ych);
new_rgb = yab_2_rgb(yab);
} else {
new_rgb = rgb;
}
}
return new_rgb;
}
__DEVICE__ float3 transform(int p_Width, int p_Height, int p_X, int p_Y, float p_R, float p_G, float p_B)
{
float3 Aces;
Aces.x = p_R;
Aces.y = p_G;
Aces.z = p_B;
Aces = scale_C(Aces, 0.7f);
float SLOPE[3] = {1.0f, 1.0f, 0.94f};
float OFFSET[3] = {0.0f, 0.0f, 0.02f};
float POWER[3] = {1.0f, 1.0f, 1.0f};
float SAT = 1.0f;
Aces = ASCCDL_inACEScct(Aces, SLOPE, OFFSET, POWER, SAT);
Aces = gamma_adjust_linear(Aces, 1.5f, 0.18f);
Aces = rotate_H_in_H(Aces, 0.0f, 30.0f, 5.0f);
Aces = rotate_H_in_H(Aces, 80.0f, 60.0f, -15.0f);
Aces = rotate_H_in_H(Aces, 52.0f, 50.0f, -14.0f);
Aces = scale_C_at_H(Aces, 45.0f, 40.0f, 1.4f);
Aces = rotate_H_in_H(Aces, 190.0f, 40.0f, 30.0f);
Aces = scale_C_at_H(Aces, 240.0f, 120.0f, 1.4f);
return Aces;
}