-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuntitled.txt
145 lines (126 loc) · 5.15 KB
/
untitled.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch.nn as nn
import torch.nn.functional as F
import torch
import cv2
import numpy as np
from torch.autograd import Variable
from torch import optim
def read_image(fname):
img = cv2.imread(fname)
img = cv2.resize(img, (256,256))
img = img.astype(np.float32)
img = img.transpose(2,0,1)
return np.array([img])
class VGG(nn.Module):
def __init__(self):
super(VGG, self).__init__()
self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.conv3_4 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv4_4 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_4 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2)
def forward(self, x, out_keys):
out = {}
out['r11'] = F.relu(self.conv1_1(x))
out['r12'] = F.relu(self.conv1_2(out['r11']))
out['p1'] = self.pool1(out['r12'])
out['r21'] = F.relu(self.conv2_1(out['p1']))
out['r22'] = F.relu(self.conv2_2(out['r21']))
out['p2'] = self.pool2(out['r22'])
out['r31'] = F.relu(self.conv3_1(out['p2']))
out['r32'] = F.relu(self.conv3_2(out['r31']))
out['r33'] = F.relu(self.conv3_3(out['r32']))
out['r34'] = F.relu(self.conv3_4(out['r33']))
out['p3'] = self.pool3(out['r34'])
out['r41'] = F.relu(self.conv4_1(out['p3']))
out['r42'] = F.relu(self.conv4_2(out['r41']))
out['r43'] = F.relu(self.conv4_3(out['r42']))
out['r44'] = F.relu(self.conv4_4(out['r43']))
out['p4'] = self.pool4(out['r44'])
out['r51'] = F.relu(self.conv5_1(out['p4']))
out['r52'] = F.relu(self.conv5_2(out['r51']))
out['r53'] = F.relu(self.conv5_3(out['r52']))
out['r54'] = F.relu(self.conv5_4(out['r53']))
out['p5'] = self.pool5(out['r54'])
return [out[key] for key in out_keys]
def subtract_imagenet_mean_batch(batch):
tensortype = type(batch.data)
mean = tensortype(batch.data.size())
mean[:,0,:,:] = 103.939
mean[:,1,:,:] = 116.779
mean[:,2,:,:] = 123.680
batch = batch - Variable(mean, requires_grad = False)
return batch
def add_imagenet_mean_batch(batch):
tensortype = type(batch.data)
mean = tensortype(batch.data.size())
mean[:,0,:,:] = 103.9393
mean[:,1,:,:] = 116.889
mean[:,2,:,:] = 123.680
batch = batch + Variable(mean, requires_grad = False)
return batch
def save_image(image, fname):
image = add_imagenet_mena_batch(image)
image = image.clamp(0,255).data[0].numpy().transpose(1,2,0)
image = image.astype(np.unit8)
cv.imwrite(fname,image)
def gram(input):
b,c,h,w = input.size()
F = input.view(b,c,h*w)
G = torch.bmm(F,F.transpose(1,2))
G.div_(h*w)
return G
vgg = VGG()
vgg.load_state_dict(torch.load("vgg_conv.pth"))
content_name = "A.jpg"
content = read_image(content_name)
content = torch.FloatTensor(content)
content = Variable(content)
content = subtract_imagenet_mean_batch(content)
content_output = vgg(content, ["r42"])
style_name = "B.jpg"
style = read_image(style_name)
style = torch.FloatTensor(style)
style = Variable(style)
style = subtract_imagenet_mean_batch(style)
style_output = vgg(style, ['r11','r21','r31','r41','r51'])
content_target = [content_output[0].detach()]
style_target = []
for s in style_output:
style_target.append(gram(s).detach())
result = Variable(content.data.clone(), requires_grad = True)
optimizer = optim.LBFGS([result])
mse = nn.MSELoss()
num = 0
while num <= 500:
def closure():
global num
optimizer.zero_grad()
result_output = vgg(result, ['r11','r21','r31','r41','r51','r42'])
result_content_loss = mse(result_output[5],content_target[0])
result_style_loss = 0
for i,_ in enumerate(result_output[:-1]):
result_style_loss += mse(gram(result_output[i]), style_target[i])
total_loss = result_content_loss + result_style_loss
total_loss.backward()
print(num, total_loss)
num += 1
return total_loss
optimizer.step(closure)
save_image(torch.cat([style,content,result],2),"saved/"+str(num)+".jpg")