Skip to content

Latest commit

 

History

History
184 lines (155 loc) · 6.51 KB

README.md

File metadata and controls

184 lines (155 loc) · 6.51 KB

Build Status

The aim of OPTiMaDe is to develop a common API, compliant with the JSON API 1.0 spec, to enable interoperability among databases that contain calculated properties of existing and hypothetical materials.

This repository contains a library of tools for implementing and consuming OPTiMaDe APIs in Python.

Status

Both the OPTiMaDe specification and this repository are under development.

Links

Developing

# Clone this repository to your computer
git clone [email protected]:Materials-Consortia/optimade-python-tools.git
cd optimade-python-tools

# Ensure a Python>=3.7 (virtual) environment (example below using Anaconda/Miniconda)
conda create -n optimade python=3.7
conda activate optimade

# Install package and dependencies in editable mode (including "dev" requirements).
pip install -e .[dev]

# Run the tests (will install test requirements)
python setup.py test

# Install pre-commit environment (e.g., auto-formats code on `git commit`)
pre-commit install

# Optional: Install MongoDB (and set `USE_REAL_MONGO = yes` in optimade/server/congig.ini)
# Below method installs in conda environment and
# - starts server in background
# - ensures and uses ~/dbdata directory to store data
conda install -c anaconda mongodb
mkdir -p ~/dbdata && mongod --dbpath ~/dbdata --syslog --fork

# Start a development server (auto-reload on file changes at http://localhost:5000
# You can also execute ./run.sh
uvicorn optimade.server.main:app --reload --port 5000

# View auto-generated docs
open http://localhost:5000/docs
# View Open API Schema
open http://localhost:5000/openapi.json

When contributing to the Python code, please use the black code formatter.

Getting Started with Filter Parsing and Transforming

Example use:

from optimade.filterparser import Parser

p = Parser(version=(0,9,7))
tree = p.parse("nelements<3")
print(tree)
Tree(start, [Tree(expression, [Tree(term, [Tree(atom, [Tree(comparison, [Token(VALUE, 'nelements'), Token(OPERATOR, '<'), Token(VALUE, '3')])])])])])
print(tree.pretty())
start
  expression
    term
      atom
        comparison
          nelements
          <
          3
tree = p.parse('_mp_bandgap > 5.0 AND _cod_molecular_weight < 350')
print(tree.pretty())
start
  expression
    term
      term
        atom
          comparison
            _mp_bandgap
            >
            5.0
      AND
      atom
        comparison
          _cod_molecular_weight
          <
          350
# Assumes graphviz installed on system (e.g. `conda install -c anaconda graphviz`) and `pip install pydot`
from lark.tree import pydot__tree_to_png

pydot__tree_to_png(tree, "exampletree.png")

example tree

Flow for Parsing User-Supplied Filter and Converting to Backend Query

optimade.filterparser.Parser will take user input to generate a lark.Tree and feed that to a lark.Transformer (for example, optimade.filtertransformers.mongo.MongoTransformer), which will turn that tree into something useful to your backend (for example, a MongoDB query dict.)

# Example: Converting to MongoDB Query Syntax
from optimade.filtertransformers.mongo import MongoTransformer

transformer = MongoTransformer()

tree = p.parse('_mp_bandgap > 5.0 AND _cod_molecular_weight < 350')
query = transformer.transform(tree)
print(query)
{'$and': [{'_mp_bandgap': {'$gt': 5.0}}, {'_cod_molecular_weight': {'$lt': 350.0}}]}

There is also a basic JSON transformer (optimade.filtertransformers.json.JSONTransformer) you can use as a simple example for developing your own transformer. You can also use the JSON output it produces as an easy-to-parse input for a "transformer" in your programming language of choice.

class JSONTransformer(Transformer):
    def __init__(self, compact=False):
        self.compact = compact
        super().__init__()

    def __default__(self, data, children):
        items = []
        for c in children:
            if isinstance(c, Token):
                token_repr = {
                    "@module": "lark.lexer",
                    "@class": "Token",
                    "type_": c.type,
                    "value": c.value,
                }
                if self.compact:
                    del token_repr["@module"]
                    del token_repr["@class"]
                items.append(token_repr)
            elif isinstance(c, dict):
                items.append(c)
            else:
                raise ValueError(f"Unknown type {type(c)} for tree child {c}")
        tree_repr = {
            "@module": "lark",
            "@class": "Tree",
            "data": data,
            "children": items,
        }
        if self.compact:
            del tree_repr["@module"]
            del tree_repr["@class"]
        return tree_repr

Developing New Filter Transformers

If you would like to add a new transformer, please add

  1. a module (.py file) in the optimade/filtertransformers folder,
  2. any additional Python requirements in setup.py and requirements.txt,
  3. tests in optimade/filtertransformers/tests.