-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathbicycle.cpp
162 lines (158 loc) · 4.96 KB
/
bicycle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// 2023-12-16
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <math.h>
using namespace std;
template <class T>
struct Point {
T x;
T y;
Point() = default;
Point(T x, T y) : x(x), y(y) {}
Point(const Point<int>& p) : x(p.x), y(p.y) {}
friend Point operator+(Point p1, Point p2) {
return {p1.x + p2.x, p1.y + p2.y};
}
friend Point operator-(Point p1, Point p2) {
return {p1.x - p2.x, p1.y - p2.y};
}
T sqrdist() const {
return x*x + y*y;
}
};
template <class T>
Point<T> operator*(T k, Point<T> p) {
return {k * p.x, k * p.y};
}
bool operator==(Point<int> p1, Point<int> p2) {
return p1.x == p2.x && p1.y == p2.y;
}
struct Circle {
Point<int> o;
int r;
};
double dist(Point<double> p1, Point<double> p2) {
return hypot(p1.x - p2.x, p1.y - p2.y);
}
int get_circle(Point<double> p, Circle c1, Circle c2) {
const double dist1 = fabs(dist(p, c1.o) - c1.r);
const double dist2 = fabs(dist(p, c2.o) - c2.r);
if (dist1 < dist2) return 1; else return 2;
}
double arcdist(Point<double> p1, Point<double> p2, Circle c) {
if (c.r == 0) return 0.0;
const Point<double> o = c.o;
const Point<double> v1 = p1 - c.o;
const Point<double> v2 = p2 - c.o;
const double a1 = atan2(v1.y, v1.x);
const double a2 = atan2(v2.y, v2.x);
return c.r * min(fabs(a1 - a2), 2.0*M_PI - fabs(a1 - a2));
}
void find_intersection(Circle c1, Circle c2,
Point<double>& i1, Point<double>& i2) {
const double d = dist(c1.o, c2.o);
const double h = max((c1.r * c1.r - c2.r * c2.r + d*d) / (2*d), 0.0);
const Point<double> D = c2.o - c1.o;
const Point<double> q = c1.o + (h / d) * D;
const double k = sqrt(max(c1.r * c1.r - h * h, 0.0));
i1.x = q.x + k * D.y / d;
i1.y = q.y - k * D.x / d;
i2.x = q.x - k * D.y / d;
i2.y = q.y + k * D.x / d;
}
double do_testcase() {
Circle c1, c2;
cin >> c1.o.x >> c1.o.y >> c1.r;
cin >> c2.o.x >> c2.o.y >> c2.r;
Point<double> p1, p2;
cin >> p1.x >> p1.y;
cin >> p2.x >> p2.y;
const int C1 = get_circle(p1, c1, c2);
const int C2 = get_circle(p2, c1, c2);
// const double d = dist(p1, p2);
// classify circles
if (c1.o == c2.o) {
if (c1.r == c2.r) {
// case 1: circles coincide
return arcdist(p1, p2, c1);
} else {
// case 2: circles are disjoint
if (C1 != C2) {
return -1;
} else {
return arcdist(p1, p2, C1 == 1 ? c1 : c2);
}
}
}
// case 3: r1 + r2 < distance between centers or
// |r1 - r2| > distance between centers
// In both cases the circles don't intersect.
if ((c1.r + c2.r) * (c1.r + c2.r) < (c1.o - c2.o).sqrdist() ||
(c1.r - c2.r) * (c1.r - c2.r) > (c1.o - c2.o).sqrdist()) {
if (C1 != C2) {
return -1;
} else {
return arcdist(p1, p2, C1 == 1 ? c1 : c2);
}
}
// case 4: r1 + r2 = distance between centers OR
// |r1 - r2| = distance between centers
// In the first subcase we get external tangency, in the second case
// internal tangency but these cases are very similar.
const bool externally_tangent =
(c1.r + c2.r) * (c1.r + c2.r) == (c1.o - c2.o).sqrdist();
const bool internally_tangent =
(c1.r - c2.r) * (c1.r - c2.r) == (c1.o - c2.o).sqrdist();
if (externally_tangent || internally_tangent) {
// find intersection point
const Point<double> D = c2.o - c1.o;
Point<double> i;
if (externally_tangent) {
i = c1.o + (c1.r / double(c1.r + c2.r)) * D;
} else {
i = c1.o + (c1.r / double(c1.r - c2.r)) * D;
}
if (C1 == 1) {
if (C2 == 1) {
return arcdist(p1, p2, c1);
} else {
return arcdist(p1, i, c1) + arcdist(p2, i, c2);
}
} else {
if (C2 == 1) {
return arcdist(p1, i, c2) + arcdist(p2, i, c1);
} else {
return arcdist(p1, p2, c2);
}
}
}
// case 5: 2 intersection points
Point<double> i1, i2;
find_intersection(c1, c2, i1, i2);
if (C1 == C2) {
Circle& c = C1 == 1 ? c1 : c2;
return min(arcdist(p1, p2, c),
min(arcdist(p1, i1, c) + arcdist(p2, i2, c),
arcdist(p1, i2, c) + arcdist(p2, i1, c)) +
arcdist(i1, i2, c1.r > c2.r ? c1 : c2));
} else {
if (C1 == 2) {
swap(c1, c2);
}
return min(arcdist(p1, i1, c1) + arcdist(p2, i1, c2),
arcdist(p1, i2, c1) + arcdist(p2, i2, c2));
}
}
int main() {
ios::sync_with_stdio(false);
int t; cin >> t;
while (t--) {
const double result = do_testcase();
if (result < 0) {
cout << "-1\n";
} else {
cout << fixed << setprecision(4) << result << '\n';
}
}
}