-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdirichlet.R
118 lines (101 loc) · 2.94 KB
/
dirichlet.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#====CONSOLE=====
#how many times algorithm should be run for given K?
initializations=10
C=3
#minimal tested K
K=2
#desired precistion for likelihood ratio
epsilon=0.01
#dataset
x=rbind(rdirichlet(500,c(0.5,4,8)),rdirichlet(200,c(5,1,3)))
#====END OF CONSOLE====
#preliminary declarations
library("mc2d")
logddirichlet = function(x,Alpha){
sum((Alpha-1)*log(x))+lgamma(sum(Alpha))-sum(lgamma(Alpha))
}
maxlogL=-Inf
bestBIC=+Inf
OW=TRUE
n=nrow(x)
while(OW==TRUE){ #loop for different Ks
OW=FALSE
cat("Now testing K=",K,"...\n")
for(Init in 1:initializations){ #loop for given K
cat(Init,"...")
Alpha=matrix(rgamma(K*C,2,0.5),ncol=C)
Tau=rep(1/K,K)
# cat(Init,K,Alpha,Beta, "\n", file="starty.txt",append=TRUE)
SumPi=NA
Pi=matrix(nrow=n,ncol=K)
logL=0
oldlogL=-Inf
ratio=+Inf
while(ratio>=epsilon){ #loop for given random initialization
#E step
for(i in 1:n){
for(k in 1:K){
sum=0
for(k1 in 1:K){
sum=sum+Tau[k1]*ddirichlet(x[i,],Alpha[k1,])
}
Pi[i,k]=Tau[k]*ddirichlet(x[i,],Alpha[k,])/sum
}
}
?ddirichlet
# for(i in 1:n){
# for(k in 1:K){
# sum=0
# for(k1 in 1:K){
# if(k1!=k) sum=sum+exp(log(Tau[k1])-log(Tau[k])+logddirichlet(x[i],Alpha[k1])-logddirichlet(x[i],Alpha[k]))
# }
# Pi[i,k]=1/(1+sum)
# }
# }
#M step
Tau=colSums(Pi)/n
flog=function(e_Alpha,e_x,e_Tau,e_K,e_C,e_n){
flogL=0
for(i in 1:e_n){
psum=0
for(k in 1:e_K) psum=psum+e_Tau[k]*ddirichlet(e_x[i,],e_Alpha[(e_C*(k-1)+1):(e_C*k)])
flogL=flogL+log(psum)
}
return(-flogL)
}
newdata=as.vector(unlist(
optim(as.vector(t(Alpha)),
fn=flog,
e_x=x,e_n=n,e_Tau=Tau,e_K=K,e_C=C,
method="L-BFGS-B",
lower=rep(0.1,times=C*K),
upper=rep(30,times=C*K))[1:2]))
Alpha=matrix(newdata[1:(K*C)],byrow=T,ncol=C)
oldlogL=logL
logL=-newdata[(C*K+1)]
ratio=abs((logL-oldlogL)/oldlogL)
cat(ratio)
}
#SETTING THE BEST SET OF SOLUTIONS
BIC=-2*logL+((C+1)*K-1)*log(n)
cat(Init,",",K,",",logL,",",BIC,",",Alpha,",",Tau,"\n"
# ,file="wyniki.txt",append=TRUE
)
if(BIC<bestBIC){
maxlogL=logL
bestAlpha=Alpha
bestTau=Tau
bestBIC=BIC
OW=TRUE
cat("New best solution found!\n")
cat("The best solution:\n","K=",K,"\n Run=",Init,"\n Tau=",bestTau,"\n Alpha=",bestAlpha,"\n LogL=",maxlogL,"\n BIC=",bestBIC,"\n \n"
# ,file="best.txt",append=TRUE
)
}
}
K=K+1
}
#output
cat("The best solution:\n","K=",K-2,"\n Tau=",bestTau,"\n Alpha=\n",bestAlpha,"\n LogL=",maxlogL,"\n BIC=",bestBIC)
#
bestAlpha