This code contains a pipeline for pre-processing text data for sentiment analysis. It includes steps for removing stop words, HTML tags, changing letter size, and removing punctuation. Future code will include text-transformations like word-embedding and word-vectorization.
To install this package simply run:
pip install pippi-lang
Elegant data pipelines are a key component of any data science project. They allow you to automate the process of cleaning, transforming, and analyzing data. This code is a simple example of how to create a pipeline for text data using cutom transformers and the sklearn Pipeline class.
from pippi import (
TransformLettersSize,
RemoveStopWords,
Lemmatize,
RemovePunctuation,
RemoveHTMLTags,
)
from sklearn.pipeline import Pipeline
import pandas as pd
pipeline = Pipeline(
steps=[
("remove_stop_words", RemoveStopWords(columns=["review","sentiment"])),
("remove_html_tags", RemoveHTMLTags(columns=df.columns.to_list())),
("uppercase_letters", TransformLettersSize(columns=["sentiment"], case_transform="upper")),
("remove_punctuation", RemovePunctuation(columns=["review"])),
]
)
output = pipeline.fit_transform(df)
df = pd.DataFrame(output, columns=["review", "sentiment"])
Pipeline Visualization:
[RemoveStopWords] -> [RemoveHTMLTags] -> [TransformLettersSize] -> [RemovePunctuation]