diff --git a/src/Trees/DecisionTrees.jl b/src/Trees/DecisionTrees.jl index 1255c8e5..ffb80b86 100644 --- a/src/Trees/DecisionTrees.jl +++ b/src/Trees/DecisionTrees.jl @@ -487,6 +487,8 @@ function findBestSplit(x,y::AbstractArray{Ty,1}, mCols;max_features,splitting_cr bestQuestion = Question(1,1.0) # keep track of the feature / value that produced it currentUncertainty = Float64(splitting_criterion(y)) (N,D) = size(x) # number of columns (the last column is the label) + left_buffer = Array{Ty,1}(undef,N) + right_buffer = Array{Ty,1}(undef,N) featuresToConsider = (max_features >= D) ? (1:D) : sample(rng, 1:D, max_features, replace=false) @@ -498,6 +500,7 @@ function findBestSplit(x,y::AbstractArray{Ty,1}, mCols;max_features,splitting_cr sortedx = x[sortIdx,:] sortedy = y[sortIdx] + if fast_algorithm bestvalue = findbestgain_sortedvector(sortedx,sortedy,d,sortedx;mCols=mCols,currentUncertainty=currentUncertainty,splitting_criterion=splitting_criterion,rng=rng) bestQuestionD = Question(d,bestvalue) @@ -521,7 +524,48 @@ function findBestSplit(x,y::AbstractArray{Ty,1}, mCols;max_features,splitting_cr continue end # Calculate the information gain from this split - gain = infoGain(sortedy[trueIdx], sortedy[map(!,trueIdx)], currentUncertainty, splitting_criterion=splitting_criterion) + + #= + @no_escape begin + left = @alloc(eltype(sortedy), length(trueIdx)) + right = @alloc(eltype(sortedy), length(sortedy)-sum(trueIdx)) + #println(length(left)) + #println(length(right)) + nl = 1; nr = 1 + for i in 1:length(sortedy) + if trueIdx[i] + left[nl] = sortedy[i] + nl += 1 + else + right[nr] = sortedy[i] + nr += 1 + end + end + @views gain = infoGain(left, right , currentUncertainty, splitting_criterion=splitting_criterion) + end + =# + + nl = 1; nr = 1 + Nl = sum(trueIdx) + Nr = N - Nl + for i in 1:N + if trueIdx[i] + left_buffer[nl] = sortedy[i] + nl += 1 + else + right_buffer[nr] = sortedy[i] + nr += 1 + end + end + @views gain = infoGain(left_buffer[1:Nl], right_buffer[1:Nr] , currentUncertainty, splitting_criterion=splitting_criterion) + + + #= + left = @view sortedy[trueIdx] + right = @view sortedy[map(!,trueIdx)] + gain = infoGain(left, right , currentUncertainty, splitting_criterion=splitting_criterion) + =# + # You actually can use '>' instead of '>=' here # but I wanted the tree to look a certain way for our # toy dataset. @@ -549,16 +593,26 @@ function findBestSplit(x,y::AbstractArray{Ty,1}, mCols;max_features,splitting_cr if all(trueIdx) || ! any(trueIdx) continue end + + nl = 1; nr = 1 + Nl = sum(trueIdx) + Nr = N - Nl + for i in 1:N + if trueIdx[i] + left_buffer[nl] = sortedy[i] + nl += 1 + else + right_buffer[nr] = sortedy[i] + nr += 1 + end + end # Calculate the information gain from this split - gain = infoGain(sortedy[trueIdx], sortedy[map(!,trueIdx)], currentUncertainty, splitting_criterion=splitting_criterion) - # You actually can use '>' instead of '>=' here - # but I wanted the tree to look a certain way for our - # toy dataset. + @views gain = infoGain(left_buffer[1:Nl], right_buffer[1:Nr] , currentUncertainty, splitting_criterion=splitting_criterion) + if gain >= bestGain bestGain, bestQuestion = gain, question end end - end end return bestGain, bestQuestion